論文概要

所属の専門分野及び講座 | 情報システム専攻 電子情報基礎講座
---|---
学生番号 | 96674075
氏名 | 大和秀好

1. はじめに 酸化物超伝導体では層状の結晶構造のために、磁界を試料のc軸方向に加えた場合に臨界電流特性が悪くな ることが知られており、この影響は実用に向けての大きな問題点となっている。層状結晶構造が最も二次元的なBi-2212超伝導体においてはこの影響を顕著に受ける。このような特性を説明する上で磁界をc軸方向に印加したときにCuO2面の間の絶縁性のブロック層で磁束線の相間が消失するというパンケーキ磁束模型が提案された。しかし、以前の研究において、超伝導体の磁束はパンケーキ磁束モデルで仮定されるようになっておらず、CuO2面間でも強く結びており、強いピンの導入により特性改善が可能であるということを報告した。一方、最も二次元的なY-123超伝導体の試料内部の磁束線の振る舞いについてはまだ報告されていない。本研究ではそうしたY-123超伝導体の磁束線の振る舞いを明らかにするために、長さ方向の磁束線と相関距離をCampbell法を用いて直接測定する。また磁化曲線の測定結果から横方向の磁束バンドラサイズを評価し、Bi-2212超伝導体と比較することで、磁束線の振る舞いに対する超伝導体の二次元性の影響について検討を行う。

2. 実験 試料は超伝導体で作製されたY-123超伝導体でサイズは5.08 × 1.58 × 0.065 mm³で、c軸は試料の広い面に垂直に配向している。臨界温度Tcは90.6 Kであった。Campbell法では試料のc軸方向に直流磁界を印加し、これに垂直に振幅b0の微小な交流磁界を加えて、試料表面における磁束線を振動し、その応答をピックアップ・コイルを用いて測定し、微小交流磁界の振幅b0に対する磁束の透入深さλを求める。b0 → 0の極限のλの値から線方向弹性相関距離λ戻が、λ = Nx曲線の最初の線形な部分の傾きから1/μ0μcが得られる。また、SQUIDによりc軸方向に磁界を印加したときの磁化の時間緩和を測定する。その対数緩和率から見掛けのピボーテンシャルU₀の評価を行った。

3. 結果及び検討 図1に85〜89 Kの温度範囲におけるλ₄₄の磁界依存性を示す。測定されたλ₄₄は数〜数十μmのオーダーで、温度および磁界に依存している。また、この測定結果は測定された臨界電流密度から得られるピンニング相関距離と定性的および定量的に一致した。図2に見掛けのピン・ボテンシャルU₀から評価した磁束バンドル内の磁束線の数g₂の磁界依存性を示す。g₂の値は3〜20程度の大きさで磁界の増加にともなって単調減少している。最も二次元的なBi-2212超伝導体におけるg₂の値が1程度である1)のに対してかなり大きいものであった。このことから、磁束バンドルは次元性が増加するにしたがって太くなり、Bi-2212では磁束線は一本ずつ独立に振る舞うのに対してY-123では大きな集団で振る舞うと考えられる。

図1. 85-89 Kにおける縦方向弹性相関距離λ₄₄の磁界依存性

図2. 磁束バンドル内の磁束線の数g₂の磁界依存性

【参考文献】