YBCO-coated 線材の広範囲電界領域における $E-J$ 特性の評価

福元 陽介

平成 15 年 2 月 25 日

電子情報工学科
目次

第1章 序章
  1.1 はじめに .................................................. 1
  1.2 磁束クリーブ ............................................. 2
    1.2.1 磁束クリーブによる電界 ............................... 2
    1.2.2 磁束クリーブと磁束フローによる電界 ................. 5
    1.2.3 見かけのピン・ポテンシャル・エネルギー$U_0^*$ ....... 6
    1.2.4 ピン・ポテンシャル・エネルギー .................... 9
    1.2.5 磁束クリーブ・フローモデルによる$E-J$ 曲線の評価法 11
  1.3 研究の目的 .............................................. 12

第2章 測定
  2.1 試料 ...................................................... 15
  2.2 試料の作成方法 .......................................... 15
    2.2.1 二軸配向方法 ....................................... 15
    2.2.2 超伝導層の作成法 .................................... 17
  2.3 測定方法 ................................................ 18
    2.3.1 四端子法による測定 .................................. 18
    2.3.2 SQUID 磁力計による磁化測定 ....................... 21

第3章 測定結果および検討
  3.1 SQUID 磁力計による測定結果 ........................... 22
  3.2 $E-J$ 特性 ................................................. 25
  3.3 $n$ 値 ...................................................... 28
  3.4 見かけのピン・ポテンシャル$U_0^*$ ....................... 31
  3.5 交流損失について ......................................... 35
    3.5.1 可逆現象について ................................. 35
第4章 結論

4.1 まとめ ................................................. 40

参考文献 ................................................. 42
図目次

1.1 磁束バンドルの位置 $x$ とエネルギー $F(x)$ の関係 .......................... 3
1.2 エネルギー・パリア $U$ と規格化電流密度 $j$ の関係 .......................... 8
1.3 縦方向の磁束バンドルサイズ $L$ と超伝導体の厚さ $d$ の関係の模式図。 ......................................................... 10
1.4 SQUID 磁力計を用いた Bi-2223 での評価例 50 K(Kodama et al., 2000) ......................................................... 14
1.5 SQUID 磁力計を用いた Bi-2223 での評価例 $^8$ 70 K(Kodama et al., 2000) ......................................................... 14
2.1 四端子法に用いた試料 ......................................................... 20
3.1 磁化の緩和 (40 K) ......................................................... 23
3.2 磁化の緩和 (50 K) ......................................................... 24
3.3 $E$-$J$ 特性 (40 K) ......................................................... 26
3.4 $E$-$J$ 特性 (50 K) ......................................................... 27
3.5 低電界領域での $n$ 値 ......................................................... 29
3.6 超低電界領域での $n$ 値 ......................................................... 30
3.7 $U_0^*$ の温度依存性 (YBCO) ......................................................... 32
3.8 $U_0^*$ の温度依存性 (Bi-2223) ......................................................... 33
3.9 磁束クリープ・フローモデルによる $E$-$J$ 特性の理論値から求めた $U_0^*$ ......................................................... 34
3.10 Bi-2223 多芯線 (フィラメント厚 $d = 2 \mu$m) の交流損失エネルギー密度 $^9$ (Otake et al., 2000) ......................................................... 37
3.11 YBCO-coated 線材 (膜厚 1 $\mu$m) の交流損失エネルギー密度 ......................................................... 38
3.12 YBCO-coated 線材 (膜厚 $d = 1 \mu$m) の交流損失エネルギー密度 ......................................................... 39
第１章 序章

1.1 はじめに

超伝導は1911年にKamerlingh-Onnesによって初めて水銀で発見された。超伝導とは温度の低下とともに電気抵抗が消失する現象のことで、これが超伝導体の大きな特徴であり工学的に応用しようとする最も大きな要因である。この電気抵抗がゼロであると言う現象は、超伝導体が完全反磁性であることに由来する。すなわち、磁束の存在そのものを受け入れないとということで、これをマイスナー効果という。このマイスナー効果は完全反磁性の限界である臨界磁界$H_c$まで持続し$H_c$で完全反磁性が破れるとともに常伝導へ戻る。ただし、本研究で用いたYBCOを含む第二種超伝導体と呼ばれる種類の物質では完全反磁性が破れた後も磁界と超伝導が共存した混合状態と呼ばれる状態になり高い磁界まで超伝導状態が持続する。1986年BednorzとMüllerにより、金属系超伝導体より高い臨界温度を持つLa系鋼酸化物超伝導体が発見され、これをきっかけにさらに高臨界温度のY系、Bi系、Tl系、Hg系、など、多くの超伝導体が発見された。液体窒素温度以上の臨界温度を持つ超伝導体（Y-Ba-Cu-O、Bi-Sr-Ca-Cu-Oなど）も発見され高温超伝導体には大きな期待が寄せられることとなった。これらの超伝導発生の基本機構はまだ分かっていないが、巨視的な電気的特性は金属系超伝導体と同様に熱力学的に記述されると見てよいと考えられている。

現在、液体窒素温度以上の臨界温度を持つ高温超伝導体のうち現実的な超伝導体として考えられているものは主にY系とBi系の2種類がある。このうちBi系の超伝導体は実際にkmオーダーの線材が作られ、それを使用した超伝導マグネットなども製作されている。これは、Bi系の超伝導体が圧延などの既存の技術で容易に線材化できるからである。一方Y系の超伝導体は高い臨界電流密度を持つ一方Bi系で用いたような技術では実用的な線材を作ることが出来ず、その製作には特殊な製法が必要となる。この
ため、長尺化が困難で製作にも非常に高いコストがかかるなどの問題がある。しかし、近年技術の進歩によって高い特性を持った長尺の線材が作られ始めている。コスト以外にも厚膜化など課題も多いが物質そのもののポテンシャルは高く、今後の研究の進展が期待される。

1.2 磁束クリープ

電流を抵抗無しで流せることが超伝導体の大きな特徴の一つである。しかし例えば、実際に超伝導試料の直流磁化を長時間観測してみるとわずかながら減衰する。これは遮蔽電流密度が時間とともに減衰している、つまりピンニングに基づく超伝導電流が真の永久電流ではないことを示している。これは、熱揺動によってピン止めされた磁束バンドルがピンから外れてしまうからで、この現象を磁束クリープと呼ぶ。

1.2.1 磁束クリープによる電界

いま、電流が流れている状態でひとつの磁束バンドルを考える。図 1.1 は、磁束バンドルの位置に対するエネルギーの変化を簡単に表したものである。 Lorentz 力による仕事を考慮したため全体としては右下がりとなっている。熱揺動がないと仮定した場合、この状態のまま磁束バンドルは安定で、電流密度がさらに大きくなっても動き出さない。電流密度が大きくなるにつれてエネルギー・バリア $U$ は小さくなっていく。$U = 0$ となって理想的な臨界状態となる。図 1.1 の状態において磁束バンドルがピンから外れるためには、エネルギー・バリア $U$ を超える必要があり、このバリアを超える確率は Arrhenius の式 $\exp(-U/k_B T)$ で与えられる。ここで、$k_B$ はボルツマン定数である。磁束バンドルの振動周波数を $\nu_0$、磁束クリープで一度に飛び距離を磁束線格子間隔 $a_t$ 程度とすると、その積 $a_t \nu_0$ が単位時間当たりの移動距離、つまり速度を与える。これより、エネルギー・バリア $U$ を超えるときに発生する電界 $E_1$ は

$$ E_1 = B a_t \nu_0 \exp \left( - \frac{U}{k_B T} \right) $$

(1.1)

で与えられる。一方、ローレンツ力と反対側へのエネルギー・バリア $U'$ を超えるときに発生する電界 $E_2$ は
図 1.1 磁単バンドルの位置 $x$ とエネルギー $F(x)$ の関係

$$F(x) = \frac{U_0}{2} \sin \frac{2\pi}{a_f} - f x$$
\[ E_2 = -B\alpha t\nu_0\exp\left(-\frac{U'}{k_B T}\right) \tag{1.2} \]

で与えられる。したがって、磁束クリーブによって生じる電界の大きさは (1.1) 式、(1.2) 式を足しあわせて

\[ E = B\alpha t\nu_0 \left[ \exp\left(-\frac{U}{k_B T}\right) - \exp\left(-\frac{U'}{k_B T}\right) \right] \tag{1.3} \]

でとる。ここで、図 1.1 のポテンシャルを

\[ F(x) = \frac{U_0}{2} \sin\frac{2\pi}{a_f} x - f x \tag{1.4} \]

のように正弦波的なものと仮定する。ここで \( x \) は磁束パンドルの位置であり、\( f = JBV \) で \( V \) は磁束パンドルの体積である。すると (1.3) 式は以下に示すようにして

\[ E = B\alpha t\nu_0\exp\left[-\frac{U(j)}{k_B T}\right] \left[ 1 - \exp\left(-\frac{\pi U_0 j}{k_B T}\right) \right] \tag{1.5} \]

という形に変形出来る。

この (1.5) 式は次のようにして導出できる。磁束パンドルが平衡位置にあるときを \( x = -x_0 \) すると \( x = x_0 \) のときエネルギーは極大となり、それぞれの場所でのポテンシャルの変化、つまり \( F'(x) \) は 0 となる。これより

\[ x_0 = \frac{a_f}{2\pi} \cos^{-1}\left(\frac{f a_f}{U_0\pi}\right) \tag{1.6} \]

が求まる。図 1.1 からも明らかにようにエネルギー・パリア \( U \) は \( U = F(x_0) - F(-x_0) \) で与えられるので

\[ U = U_0 \sin\left[\cos^{-1}\left(\frac{f a_f}{U_0\pi}\right)\right] - \frac{f a_f}{\pi} \cos^{-1}\left(\frac{f a_f}{U_0\pi}\right) \]

\[ = U_0 \left\{ 1 - \left(\frac{2f}{U_0 k}\right)^2 \right\} - \frac{2f}{U_0 k} \cos^{-1}\left(\frac{2f}{U_0 k}\right) \tag{1.7} \]
となる。ただし、ここで \( \sin(\cos^{-1}(x)) = \sqrt{1 - x^2} \) を用い、また \( k = a_t/2\pi \) と置いた。熱振動が無いと仮定すると、電流密度 \( J \) が磁束クリープがないと仮定したときの仮想的な臨界電流密度 \( J_0 \) を取るとき、理想的な臨界状態 \( U = 0 \) が達成される。このためには \( 2f/U_0 k = 2J_0 BV/U_0 k = 1 \) となる必要があり、これより

\[
\left( \frac{2f}{U_0 k} \right) = \frac{J}{J_0} \equiv j
\]

を得る。よって (1.7) 式は

\[
U(j) = U_0[(1 - j^2)^{1/2} - j\cos^{-1}j]
\]

となる (図 1.2 参照)。また、

\[
U' \simeq U + f a_t = U + \pi U_0 \frac{J}{J_0}
\]

の関係が得られ、これより (1.5) 式が導かれる。なお (1.9) 式からも \( j = 1 \) のときは理想的な臨界状態となりエネルギー・バリア \( U \) は 0、\( j = 0 \) のときは真のピン・ポテンシャル・エネルギー \( U_0 \) となることが分かる。

1.2.2 磁束クリープと磁束フローによる電界

電流が流れているときに発生する電界は磁束クリープによる電界と磁束フローによる電界が考えられる。磁束フローとは電流密度が臨界電流密度を越えたときに磁束線が一気に運動を始める現象のことであり、前に述べたように磁束クリープによって発生する電界は (1.5) 式で与えられる。そこで、磁束フロー状態か否かで次の二つの式で与えられると仮定する。一つは磁束フロー状態で無い場合、つまり規格化電流密度 \( j \) が \( j < 1 \) の場合に磁束クリープによって発生する電界。二つ目が磁束フロー状態、つまり \( j \geq 1 \) の場合に磁束クリープによる電界である。

\[
E_{cr} = B a_t v_0 \exp \left[ -\frac{U(j)}{k_B T} \right] \left[ 1 - \exp \left( -\frac{\pi U_0 j}{k_B T} \right) \right]; \quad j < 1
\]

\[
= B a_t v_0 \left[ 1 - \exp \left( -\frac{\pi U_0 j}{k_B T} \right) \right]; \quad j \geq 1
\]

一方、磁束フローによる電界成分は

\[
E_{ff} = 0; \quad j < 1
\]

\[
= \rho_0 (J - J_0); \quad j \geq 1
\]
で与えられる。ここで \( \rho_t \) はフロー比抵抗である。\( j < 1 \) では全体で発生する電界は磁束クリープによるものののみとなるが、\( j > 1 \) では磁束フローによる電界が支配的となると思われる。そこで、全体の電界は

\[
E = (E_{cr}^2 + E_{ff}^2)^{1/2}
\]

のように、二乗平均で近似して与えられるものとする。

1.2.3 見かけのビン・ポテンシャル・エネルギー \( U_0^* \)

(1.9) 式の \( U \) と \( j \) の関係を図1.2に示す（曲線）。この図1.2からも明らかのように、\( j \) が大きくなるにつれて \( U \) は減少する。そこでここでは、仮想的な臨界状態に近く、超伝導電流の緩和が小さい場合を考え \( U = U_0^* - sJ \) と置く事にする。\( U_0^* \) は \( J \to 0 \) としたときのエネルギー・パリアの値で見かけのビン・ポテンシャル・エネルギー \(^2\) と言う。この場合、つまり \( U \ll U' \) の場合、電流密度の対数緩和率と \( U_0^* \) の間には

\[
- \frac{d}{d \log t} \left( \frac{J}{J_c0} \right) = \frac{k_BT}{U_0^*}
\]

のような関係があり、これより見かけのビン・ポテンシャル・エネルギー \( U_0^* \) が求まる。電流密度 \( J \) が磁気モーメント \( m \) に比例することから、\( U_0^* \) は磁気モーメントの緩和率の測定から評価するのが一般的である。この \( U_0^* \) は真のビン・ポテンシャル・エネルギー \( U_0 \) とは異なり、図1.2のように \( U_0^* \) は \( U_0 \) より小さい。つまり、磁化の緩和の実験から求められるビン・ポテンシャル・エネルギーは実際の値より過小評価になっている。

(1.14) 式は次のようにして導かれる。今、大きな超伝導平板 \((0 \leq x \leq 2d)\) を考え、これに対して磁界を \( z \) 軸方向に平行に加える。対称性より半分 \((0 \leq x \leq d) \) のみを取り扱えばよい。増磁の場合、電流は \( y \) 軸の正方向、磁束クリープによる磁束バンドルの運動は \( x \) 軸の正方向である。平均の電流密度を \( J \) すると磁束密度は \( B = \mu_0 (H_e - Jx) \) で与えられ、超伝導体表面での電界はMaxwell方程式より、その平均値 \( \langle B \rangle \) を用いて

\[
E = \frac{\partial \langle B \rangle}{\partial t} = -\frac{\mu_0 d^2}{2} \cdot \frac{\partial J}{\partial t}
\]

となる。この関係を (1.3) 式の左辺に代入し、\( U \) および \( U' \) を \( J \) の関数として与えれば、超伝導電流の時間的緩和を導くことが出来る。ここでは仮想的な臨界状態に近く超伝導電流の緩和が小さい場合を考えているので、前
述のように $U \ll U'$ であり、(1.3) 式の第二項は無視できる。電流密度 $J$ が
臨界電流密度 $J_{c0}$ の時、理想的な臨界状態 $U = 0$ であると考えられること
から、$U = U_0^* - sJ$ より $s = U_0^*/J_{c0}$ とでき

$$
U = U_0^* \left(1 - \frac{J}{J_{c0}}\right)
$$

(1.16)
を得る。これより電流密度の時間変化を記述する式は

$$
\frac{\partial J}{\partial t} = - \frac{2B_{\alpha}\nu_0}{\mu_0 d^2} \exp \left[- \frac{U_0^*}{k_B T} \left(1 - \frac{J}{J_{c0}}\right)\right]
$$

(1.17)
となる。この方程式を $t = 0$ で、$J = J_{c0}$ という初期条件のもとで解くと

$$
\frac{J}{J_{c0}} = 1 - \frac{k_B T}{U_0^*} \log \left(\frac{2B_{\alpha}\nu_0 U_0^* t}{\mu_0 d^2 k_B T J_{c0}} + 1\right)
$$

(1.18)
を得る。十分な時間の後には (1.18) 式の対数の中の 1 が無視できる。この
対数緩和率が (1.14) 式である。

また、Welch$^3$ の理論結果によれば、washboard ポテンシャルの場合 $U_0$
と $U_0^*$ の間には

$$
U_0^* = 1.65 (k_B T U_0^2)^{1/3}
$$

(1.19)
という関係がある。
図 1.2 エネルギー・バリア $U$ と規格化電流密度 $j$ の関係
1.2.4 ピン・ボテンシャル・エネルギー

磁束クリーブによる超伝導電流の緩和率や、不可逆曲線を決定する上で重要なピン・ボテンシャル・エネルギー $U_0$ は磁束バンドルの体積 $V$、$\zeta$ を用いて次のように表される 4)。

$$U_0 = \frac{1}{2\zeta} J_{c0} B a_t V$$  \hspace{1cm} (1.20)$$

ここで $\zeta$ はピンの種類に依存した定数で、例えば点状のピンでは $\zeta \approx 2\pi$ となる。また $a_t$ は $\phi_0$ を磁束量子として $(2\phi_0/\sqrt{3} B)^{1/2}$ となる。この (1.20) 式から、磁束バンドルの体積が、ピン・ボテンシャル・エネルギーを決定する上で非常に重要なことが分かる。ここで、磁束バンドルを図 1.3のようなモデルで考える。縦方向のサイズを $L$、横方向のサイズを $R$、超伝導体の厚さを $d$ とすると、$L$ と $d$ の大小関係によって磁束バンドルのサイズ $V$ が異なる値をとる。それぞれの場合に応じて $L, R, d$ を与えることで、対応したピン・ボテンシャル・エネルギーを理論的に計算することが出来、以下のようになる。$L, R$ はそれぞれ

$$R = g a_t$$  \hspace{1cm} (1.21)$$

$$L = \left( \frac{B a_t}{\zeta \mu_0 J_{c0}} \right)^{1/2}$$  \hspace{1cm} (1.22)$$

で与えられ、この縦方向の磁束バンドルサイズ $L$ が超伝導体の厚さ $d$ より小さい場合、磁束バンドル中の磁束の本数を $g^2$ として

$$U_0 = \frac{0.835g^2 k_B J_{c0}^{1/2}}{\zeta^{3/2} B^{1/4}}$$  \hspace{1cm} (1.23)$$

$L$ が $d$ より大きい場合

$$U_0 = \frac{4.23g^2 k_B J_{c0}d}{\zeta B^{1/2}}$$  \hspace{1cm} (1.24)$$

となる。
図 1.3 縦方向の磁束バンドルサイズ $L$ と超伝導体の厚さ $d$ の関係の模式図。
1.2.5 磁束クリーブ・フローモデルによるE-J曲線の評価法

仮想的な臨界電流密度$J_{c0}$を与えると、(1.23)または(1.24)式よりピン・ポテンシャル・エネルギー$U_0$が求まる。さらに、磁束クリーブと磁束フローによる電界も求まり(1.13)式より全体の電界を得ることが出来る。ここで$J_{c0}$は、

$$J_{c0} = A \left[ 1 - \left( \frac{T}{T_c} \right)^2 \right]^m B^\gamma - 1 \left( 1 - \frac{B}{B_{c2}} \right)^\delta$$

(1.25)

のようなスケール側で与えられるとする5)。$A$、$m$、$\gamma$、$\delta$はピンニングパラメーターである。ただし、本研究で用いる際には$B \ll B_{c2}$より$B/B_{c2} = 0$としている。一般に酸化物超伝導体は内部が不均一であり、また弱結合などもあって実質的なピン力の大きさも広く分布していると思われる。そこでここでは、ピン力の強さを示す$A$が以下のような分布を持つと仮定する6)。

$$f(A) = K \exp \left[ -\frac{(\log A - \log A_m)^2}{2\sigma^2} \right]$$

(1.26)

$K$は規格化定数、$\sigma^2$は分布の広がりを表すパラメーター、$A_m$は$A$の最頻値である。このような$A$の分布を考慮に入れると、全体の電界は

$$E(J) = \int_0^\infty Ef(A)dA$$

(1.27)

で与えられる。このように、各パラメーターを与えることで、E-J曲線を評価することが出来る。
1.3 研究の目的

液体窒素温度で超伝導体となることの出来る酸化物超伝導体のうち、現在実用的な超伝導体として考えられているものはBi系とY系の超伝導体が挙げられる。Y系超伝導体は、Bi系の超伝導体と比較して特に高温（液体窒素温度付近）、高磁界中での特性が優れているという特徴があり、その応用に向けた研究が盛んに行われている。しかし、結晶構造が三次元的に行なうBiのような機械的、応力では結晶はほとんど配向せず、線材の作成にはまず基板の上に配向した中間層を作りその上に超伝導体を成膜するといった方法がとられる。本研究で用いる YBCO-coated 線材は、こういった製法のため長尺化は難しいとされてきた。しかし、近年実用レベルに近い臨界電流特性を持った長尺の超伝導線材が開発されるようになり、その応用が期待されている。

臨界電流密度は実際の使用に際しことまで電流を流すことが出来るかの指標となるため非常に重要な値である。この臨界電流特性を求める場合、ある基準となる電界を決めてそのときの電流値を臨界電流密度とする。しかし、実際の応用では応用ごとに超伝導が置かれる電磁気的環境が異なるため発生する電界も異なった値となる。例えば NMR（核磁気共鳴分析装置）では極めて高い（0.01 ppm/h 程度）磁界の安定度が要求されるため、発生する電界は極めて小さい値となる。一方電力輸送用のケーブルでは交流での使用となるため、発生する電界も NMR に比べると高い値となる。このように、各応用ごとで発生する電界が異なるため臨界電流特性もそれぞれの応用に即したものが必要となる。したがって各応用を全て含んだ広い電界領域での E-J 特性を定量的に評価することは非常に意味のあることであると言える。

本研究で用いた YBCO-coated 線材の E-J 特性は低電界領域については、四端子法によって評価がなされているが、超低電界領域の特性は明らかになっていない。そこで本研究では SQUID 磁力計を用いた磁化緩和測定から、この超低電界領域での E-J 特性を評価を行う。SQUID 磁力計を用いた磁化緩和測定による超低電界領域での E-J 特性の評価は Bi 系ではすでに行われている8）。その測定例を図 1.4、図 1.5 に示す。低電界領域（10^{-2} V/m 付近）が四端子法によるデータ、超低電界領域（10^{-7} V/m 付近）が SQUID による磁化緩和測定から得られたデータで、そのデータは互いに整合性が見
られる。したがって SQUID 磁力計による磁化緩和測定から超低電界領域の
$E-J$ 特性評価可能であることが分かる。

本研究では、低電界領域と超低電界領域を含んだ広範囲電界領域での
YBCO-coated 線材の $E-J$ 特性を評価することを目的とする。
図1.4 SQUID磁力計を用いたBi-2223での評価例 50 K(Kodama et al., 2000)

図1.5 SQUID磁力計を用いたBi-2223での評価例 70 K(Kodama et al., 2000)
第2章 測定

2.1 試料

本実験で用いた試料は株式会社フジクラで製作したYBCO-coated 線材で、IBAD 法によって2軸配向性を導入されている。$T_c$ は87.8 K、YBCO膜の厚さは1.0 μmのものを用いた。

2.2 試料の作成方法

良好な特性を得るためには、できるだけ結晶の向きをそろえれば良いことが経験的に知られている。結晶が二次元的なBi系の超伝導体では圧延などの機械的な応力によって容易に配向することができるため、容易に長尺化することが出来る。

一方、結晶構造が三次元的なY系超伝導体では機械的な応力ではほとんど配向しない。そこでY系の試料では配向した超伝導層を得るために中間層を2軸配向させ、その上にPLD法、CVD法などの方法で超伝導層を形成している。こうすることで、結晶配向のよい超伝導層を得ることが出来る。本実験で用いた試料では中間層の配向にIBAD法を超伝導層作成にはPLD法を利用してある。

2.2.1 二軸配向方法

前にも述べたようにY系の超伝導線材では超伝導層と基板の間にある中間層を配向させその上に超伝導層を成膜している。中間層は元々、基板中の成分がか超伝導体中に拡散するのを防ぐために使われていたものであるが、Y系の超伝導線材ではこの中間層や基板を配向させることでより配向した超伝導層を実現している。この配向技術にはさまざまな手法があり、例えば中間層を配向する方法としてはIBAD法、ISD法など、基板そのものを配向する方法としてはRABiTS法、SOE法などがある。
IBAD法

IBAD(Ion Beam Assisted Deposition)法は基板上の中間層を成膜する際に、テープ基板に対して特定の方向よりイオンビームを照射することで、中間層の結晶を単結晶のように全面にわたって配向させる手法である。IBAD法開発当初は、製造速度が遅いうえに設備メンテナンスに手間がかかるなど、長尺線材化は疑問視されることが多かった。しかし、技術水準の向上とともに製造速度も向上し、30 mの全長において81万 A/cm²(77 K)と実用レベルである100万 A/cm²に近いJc特性を持つYBCO-coated線材の開発もされている。

ISD法

ISD(Inclined Substrate Deposition)法は、物理蒸着法において、中間層を成膜する際に基板を傾けることで結晶を配向させる手法である。配向が容易に行えるため長尺化がしやすくまた作製速度も高速であるという特徴を持つ。しかし、その製法に由来した基板法線に対する結晶配向方向のれ、やや大きい面内配向性などの問題もある。このため、結晶配向性は高いとは言えず、JcもIBAD法によるものより低い値となっている(6 mテープの中央5 m(77 K)で1×10⁵ A/cm²)。しかし、RISD(Reverse ISD)法などこれらの問題点を低減する技術も開発されており、今後の特性の向上が期待される。

RABïTS法

RABïTS(Rolling Assisted Biaxially Textured Substrate)法は、圧延と熱処理によって冶金的に二軸配向した純Niテープを製作し、その上に中間層とYBCO膜を成膜する手法である。IBAD法と比較して個々のプロセスが簡単なためIBAD法より低コストで済むにもかかわらず、短尺の試料ではIBAD法に匹敵するJc特性が得られている。しかし、長尺の試料での特性はIBAD法より劣り、基板自体を配向させる必要があるため使用できる基板の種類が限られるなどの問題もある。

SOE法

SOE(Surface-Oxidation Epitaxy: 表面酸化エピタキシー)法は、二軸配向したNiテープ基板を表面酸化することでテープ面に二軸配向したNiOを形
成し、その上にYBCOなどの超伝導層を成膜する手法である。Niテープの
二軸配向は圧延と熱処理で行うことができ、また二軸配向した中間層も金
属表面の酸化で実現できるため基板の長尺化、低コスト化に効果である。臨
界電流密度も数十万 A/cm²(77 K)と実用的な値に達しており100万 A/cm²
を超えるJcも期待されている。

2.2.2 超伝導層の作成法

TFA-MOD法

TFA-MOD(trifluoroacetate-metal organic deposition)法はY, Ba, Cuのトリプルオキ酸塩原料液を基板上に塗布して、水蒸気雰囲気中、700-800
℃程度で熱処理して、超伝導膜を得る手法である。これまで、Y系超伝導
線材を作製するにはPLD法などが用いられてきたが、このTFA-MOD法の
場合真空装置がいらず、またプロセスも原料液を塗って焼くだけであるた
めに非常に低コストである。もともと、膜を厚くすることが困難であった
ため高いIcを得ることが出来なかった。しかし近年、電流特性を下げるこ
となく数回の膜塗布を繰り返すことが可能となり、150A以上という大き
な電流密度も得られている。Y系超伝導テープ線材は高温高磁界でも特性
が優れているが、一方で特性を落とすことなく厚膜化することが困難とさ
れている。このため、高いJcに対してIcがあまり高くできないという欠点
がある。TFA-MOD法での繰り返し塗布はこういった欠点を補う可能性を
持っており、注目すべき製法であるといえる。

LPE法

LPE(Liquid Phase Epitaxy: 液層エピタキシャル成長)法は溶液または融
液から基板上に結晶を成長させる手法である。SOE法で作製した基板上
(NiO/Ni)にPLD法でYBCOの種膜を作製しその上にLPE法で超伝導層を
成膜している。特徴としては比較的成膜速度が速いこと、超伝導層の厚膜
かが容易なことが上げられる。LPE法に用いる溶液は反応性が高いため、
NiO上で高い臨界電流密度を実現するにはNiO上に薄いMgO層やCeO₂層
等をコーティングしておく必要がある。非真空系プロセスのため低コスト化にも
有効だと思われる。
CVD法

CVD(Chemical Vapor deposition: 化学気相蒸着法)法は気体原料から化学反応を経て、薄膜など合成する手法である。超伝導以外にもさまざまな用途で利用されている。基板には二軸配向させたYSZ中間層を形成したハステロイテーブやAgなどが用いられている。特にAgは超伝導材料と反応性が小さいことから高特性の超伝導膜を中間層を介さないように直接形成することが出来る。大面積への薄膜形成が可能で、また装置もシンプルであるため長尺化に有利な手法である。特性もハステロイ基板を用いたもので$J_c$が$10^5$ A/cm$^2$以上と高い特性を得ることが出来る。線材の作製速度が十分でないという欠点があったが高速化する技術も開発されつつある。

PLD法

PLD(Pulsed Laser Deposition: レーザー蒸着法)法はターゲットと呼ばれる塊にパルスレーザーを断続的に照射し、その表面を急激に加熱し光化学反応を起こさせることで成分を爆発的に気化させ、飛散した分子をターゲットと対向して配置した基板の上に堆積させることによって薄膜を得る手法である。超伝導体ではターゲットに超伝導体の塊を用い、基板に配向性を導入したものを使用することでその上に二軸配向した超伝導層を成膜できる。本研究で用いた試料では超伝導作製性の際にこのPLD法を用いている。

2.3 測定方法

本実験では、YBCO-coated線材の広範囲電界領域での$E$-$J$特性を評価するために$10^{-3}$ ~ $10^{-1}$ V/m付近の低電界領域は四端子法から、$10^{-8}$ ~ $10^{-6}$ V/m付近の超低電界領域はSQUIDによる磁化緩和測定からそれぞれの$E$-$J$特性の評価を行った。

2.3.1 四端子法による測定

四端子法は、試料の$E$-$J$特性を測定する手法の一つで、試料の両端から直接電流を通電し、試料中央部の端子間の電圧を測定することで$E$-$J$特性を評価する手法である。実験装置が比較的簡単で、測定時間も比較的短くてすむなどの特徴をもつ。

試料は図2.1のようにブリッジ状にケミカルエッチングして作成された
もののを使用し、ブリッジのサイズはブリッジの狭まった部分で1 mmと100 μm、YBCO層の厚さは1 μmとなっている。試料は図2.1のように囲われた銀蒸着されていて、その部分にリード線をつけて測定を行った。外側の二箇所から電流を通電し、内側の端子間に生じる電圧を測定することからE-J特性が求まる。リード線と試料の間には比較的大きな接触抵抗があり通電によって熱が発生するが、この発熱による影響を出来るだけ抑えるために、電流は1秒間のパルス通電としている。
図 2.1 四端子法に用いた試料
2.3.2 SQUID 磁力計による磁化測定

超低電界領域の測定は SQUID 磁力計 (Superconducting QUantum Interference Device: 超伝導量子干渉素子) を用いて行った。この測定で求まる磁気モーメントの値は内部を流れている遮蔽電流の値 \( J \) を、その時間変化がそのとき内部で発生している電界 \( E \) をそれぞれ次式のように与える。ただしここでは、遮蔽電流は場所によらず一定であると仮定している。

\[
J = \frac{12m}{w^2d(3l-w)} \quad (2.1)
\]

\[
E = \frac{-\mu_0}{2d(l+w)} \cdot \frac{dm}{dt} \quad (2.2)
\]

ここで \( w, l, d \) はそれぞれ試料の幅、長さ、厚さを示している。

用いた試料サイズは幅 \( w \) が 2.74 mm、長さ \( l \) が 2.04 mm、厚さ \( d \) が 1.0 \( \mu \text{m} \) となっている。試料の \( c \) 軸方向の外部磁界に対する磁化の測定を行い、そこから (2.1) 式、(2.2) 式を用いて \( E-J \) 特性の評価を行った。ただし、SQUID 磁力計での磁化の測定値は [emu] であり、これを SI 単位系に換算するとき以下の式を用いた。

\[
\Delta M[A/m] = \Delta M[\text{emu}] \times 10^3 \quad (2.3)
\]

このようにして、磁化の測定から \( E-J \) 特性を得ることが出来る。
第 3 章 測定結果および検討

3.1 SQUID 磁力計による測定結果

SQUID 磁力計で、各温度ごとに磁界を 1 T から 6 T まで 1 T きざみで
変化させ各磁界ごとの緩和を測定した。測定された磁化の緩和の様子を図
3.1、図3.2に示す。図は 40 K、50 K での測定結果で横軸は時間、総軸は磁
化の値を表している。時間とともに、磁化の値が対数緩和しているのが分
かる。これは磁束クリーブによる磁束線の運動で電界が発生し遮蔽電流が
減衰したからである。また磁界が高くなるにしたがって磁化の値が全体的
に減少しているが、これは外部磁界の上昇によって自由エネルギー密度が
増加し、その結果臨界電流密度が低下したからである。
図 3.1 磁化の緩和 (40 K)
図 3.2 磁化の緩和 (50 K)
3.2 E-J 特性

SQUID による磁荷緩和のデータより求めた超低電界領域での E-J 特性と四端子法から得られた低電界領域での E-J 特性を温度ごとに図 3.3、図 3.4に示す。E-J 特性の評価には、(2.1) 式、(2.2) 式を用いた。10^{-7} V/m 付近の超低電界領域は SQUID によるの磁化緩和から得られたデータ、10^{-2} V/m 付近の低電界領域は四端子法によって得られてデータ、破線は磁束クリーブ・フローモデルによる解析値である。解析に用いたパラメーターは

\[ A_m = 8 \times 10^{10}, \quad \sigma^2 = 0.015, \quad \gamma = 0.65, \quad m = 3 \]

となっている。四端子法の測定結果で、解析値の間に多少ずれがみられるが超低電界領域においてはよく一致している。この結果から磁束クリーブ・フローモデルによって広範囲電界領域での特性がほぼ説明可能であることが分かる。YBCO の測定値で 40 K の低電界領域でのデータが少ないのは高い J による電流端子での発熱のため温度が安定せず正確な測定ができなかったからである。実際、図 3.3のように \( J_c \) は平均 10^{9} A/m^2 以上の値を持っており、J も高い值であることがわかる。

ここで図 1.4で示した Bi-2223 での広範囲電界領域での特性と比較をしてみる。例えば 50 K、3 T 付近のデータを比較してみると Bi-2223 のデータは全体として下に凸となっている。一方、YBCO のデータは全体的に上に凸となっている。これは、この温度、磁界領域では Bi-2223 はビン力が弱く磁束線がわずかな駆動力でも動き抵抗が発生してしまう液体状態、逆に YBCO はグラス状態になっていることを示している。これは Bi-2223 と YBCO のビン力、次元性の違いを示しておりパラメーターをすれば \( A_m \) と \( g^2 \) の違いにあたる。また、ある同じ電界基準で比較したときの、J の値も YBCO のほうが圧倒的に大きい。このことからも、YBCO は高温高磁界での特性が優れていることがわかる。
図 3.3 $E$-$J$ 特性 (40 K)
图 3.4 $E$-$J$ 特性 (50 K)
3.3  $n$ 値

SQUID による超低電界領域と四端子法による低電界領域での $n$ 値を各温度、磁界ごとに求めた。$n$ 値とは電流-電圧特性 ($E$-$J$ 特性) の非線形性の強さを示すパラメーターで、値が大きいほど $E$-$J$ 特性の立ち上がりが急になることを示している。具体的には $E$-$J$ 特性を

$$E \propto J^n \tag{3.1}$$

のように表したときの指数 $n$ のことである$^7)。n$ 値が大きい線材は $E$-$J$ 特性の立ち上がりが非常に急であるため、流す電流を少し小さくするだけで発生する電圧を急速に下げることができる。このため、一般に実用超伝導線材では $n$ 値が大きいほど優れているとされ、その実用超伝導線材においては $n$ 値は 50 以上の値を持つ。この $n$ 値を決定する $E$-$J$ 特性は、ピン・ポテンシャル場内での磁束線運動の非線形性などの微視的な物から超伝導線材内の臨界電流密度の空間的な不均一さや、ソーセージングなどの巨視的な物まで様々な要因によって影響される。このため、$n$ 値を直接物理的な量として導くことは難しく、$n$ 値はあくまで実用上の便宜的なパラメーターである。

測定結果を図 3.5、図 3.6 に示す。$n$ 値が最も大きいのは超低電界領域の 40 K、1 T の場合でその値はおよそ 35 程度で温度、磁界が上がるとしたがって大きくなり低下している。これは、この領域での臨界電流密度のパラメータがその平均値に対して相対的に大きくなくなるからである。この低下は非常に大きく実用的には多少厳しいといえる。低電界領域と超低電界領域での $n$ 値の大きさを比較すると、全体的に超低電界領域のはが大きくなっており、これはこの温度、磁界領域では YBCO の磁束線がグラス状態であることを示している。
図 3.5 低電界領域での $n$ 値
図 3.6 超低電界領域での $n$ 値
3.4 見かけのピン・ポテンシャル $U_0^*$

磁化緩和測定の結果から YBCO の見かけのピン・ポテンシャル $U_0^*$ を見積もった。1 章でも述べたように、この $U_0^*$ は真のピン・ポテンシャル・エネルギー $U_0$ とは異なる。例えば、$T = 0$ では臨界電流密度が最大になるのに対して $U_0$ は最大値をとり、温度とともに減少していく。これに対して、緩和から求まる $U_0^*$ は $T = 0$ ではなく温度とともに増加していき。これは、低温では測定開始時にはまだほとんど緩和が起こっていないことからエネルギー・バリア $U$ が大きく、したがって磁束クリープにより緩和が容易に起こるからである。対して高温部分では測定開始時にはすでに大きく緩和しており、したがって磁束クリープは起こりにくく $U_0^*$ は大きくなる。このように、$U_0^*$ と $U_0$ は異なったものであるが、ピン・ポテンシャル・エネルギーが大きいと緩和が起こりにくい、つまり $U_0^*$ も大きくなるということは言える。つまり、ある温度、磁界で異なる物質においてそれぞれ緩和から $U_0^*$ を測定を行ったとき、その値に大小関係があるならそれはピン・ポテンシャル・エネルギーの大小関係を示していると言える。

緩和より求まった $U_0^*$ を以下に図で示す。図 3.7 はその結果である。図 3.8 は Bi-2223 での $U_0^*$ で、この値と比較して YBCO の $U_0^*$ は非常に大きい。つまり YBCO が Bi-2223 に比べて高いピン・ポテンシャル・エネルギーを持ち、高温、高磁界中での特性が優れていることが分かる。

図 3.9 は磁束クリープ・フローモデルによって予測された $E-J$ 特性から $U_0^*$ を求めたものである。具体的には $E-J$ 特性の理論値を (2.1) 式、(2.2) 式にあてはめ、そこから磁化緩和の様子を求めるという方法をとった。図 3.7 と図 3.9 を比較してみると分かるように全体的な傾向は非常に良く表すことが出来ている。このことからも、磁束クリープ・フローモデルによる $E-J$ 特性の予測（特に超低電界領域での）が正確なものであったことが分かる。
図 3.7 $U_0^*$の温度依存性 (YBCO)
図 3.8 $U_0^*$の温度依存性（Bi-2223）
図3.9 磁束クリープ・フローモデルによるE-J特性の理論値から求めた$U_0^*$
3.5 交流損失について

現在、YBCO-coated 線材の交流損失に関する研究をおこなっているのでここで触れておく。図 3.10 は、Bi-2223 多芯線の交流損失エネルギー密度を Kim モデルによる理論値と実験値で比較したものである。高磁界側では両者はよく一致しているが、低磁界側では理論値より損失が低いたい値となっている。Bi-2223 のフィラメント厚は 2 \( \mu m \) 程度であり、これは交流磁場侵入距離 \( \lambda_0 \) と同程度の大きさであると思われる。後にも述べるように、試料のサイズが \( \lambda_0 \) と同程度かそれ以下になると可逆現象による影響を強く受けようになる。Bi-2223 での損失が理論値に対して小さいのは、この可逆現象によるものである。

現在行っている研究では YBCO-coated 線材における可逆現象の影響を調べている。これは、YBCO 膜の厚さが 1 \( \mu m \) 程度しかなく Bi-2223 の場合と同様に可逆現象の影響で理論値よりも損失が低くなる可能性があるからである。

測定で得られた交流損失エネルギー密度を図 3.11 に示す。Bi-2223 で理論値より低磁界側で低くなっていったのに対して、YBCO では理論値より損失が大きくなっている。原因は現在検討中だが、その原因としてハステロイ基板の影響を考えている。図 3.12 は測定されたヒステリシス曲線である。曲線が大きく右に上がった形となっており、これはハステロイ基板によるものと考えられる。これと同様に損失に対してもハステロイ基板が影響を与えたものと考えているが、基板の影響がないとした場合損失が Bi-2223 と同様の傾向を示すかどうかについては今のところ結論は得られていない。

3.5.1 可逆現象について

超伝導体内における多くの電磁現象は不可逆なものであり、臨界状態モデルによってよく記述される。臨界状態モデルは \( J_c \) がローレンツ力とピン力がつりあうところで決定され、磁界を加えたときこの \( J_c \) に対応した磁束分布の勾配がいたるところで成立しているとする考え方である。ピンニング相互作用は最大限その効果を発揮するとみなされており、また磁束線の運動に対する力の向きは常に逆向きとなる。つまり、臨界状態モデルではピン・ポテンシャルからもたらされるピン力は完全な不可逆なものであると仮定している。しかし、本来ポテンシャルは微視的なレベルで可逆
なものであり、それが不可逆となるのはポテンシャル内に磁束線が落ち込むときや飛び出すときの運動の不安定性によるものである。つまり、磁束線の運動が少なくポテンシャル内に限られるのであれば、その現象は可逆なものとなり臨界状態モデルは適用できなくなる。この可逆現象はサイズが、$\lambda_0$ より十分大きい超伝導体の場合には問題にならなかった。サイズが $\lambda_0$ に対して十分大きい場合、磁束線の変位や損失が生じる空間領域が大きくなり、結果として一周期分の損失に対する可逆近い部分での損失が占める割合が小さくなったためである。一方、サイズが $\lambda_0$ より小さい場合可逆に近い部分での損失が占める割合が大きくなるため、全体の損失は可逆現象の影響を強く受けたものとなる。この傾向は交流磁界振幅が小さい領域でよく見られる。
modified Kim’s model

\[ W (J/m^3) \]

\[ B_m (T) \]

77.3 K

90 K

theor. exper.

図 3.10 Bi-2223 多芯線（フィラメント厚 \( d = 2 \mu \text{m} \) の交流損失エネルギー密度\(^9\)（Otabe \textit{et al.}, 2000）
図 3.11 YBCO-coated 線材 (膜厚 1 μm) の交流損失エネルギー密度
図3.12 YBCO-coated 線材（膜厚 d = 1 μm）の交流損失エネルギー密度
第4章 結論

4.1 まとめ

本研究では、四端子法とSQUID磁力計を用いた磁化緩和測定からYBCO-coated 線材の広範囲電界領域での$E-J$特性の評価を行った。さらに、この特性とピン力の分布を考慮に入れた磁束クリープ・フローモデルによる予測との比較を行った。結果、低電界領域では若干ずれが見られたが、特に超低電界領域では良い一致を示しており、磁束クリープ・フローモデルによって広範囲電界領域での$E-J$特性の評価がほぼ可能なことが分かった。さらに、$n$値、見かけのピン・ポテンシャル・エネルギー$U_0^*$の評価も行った。$n$は最も高かった1 T, 40 K で35程度の値を持つが、その値は磁界、温度の上昇とともに著しく低下していくことが分かった。YBCO はBi系の超伝導体と比べて高温高磁界中での特性が優れているという特徴を持ち、線材としての応用が期待されているがこういった観点から見るとまだ実用的には厳しいと言える。一方、$U_0^*$の測定では測定された全ての温度、磁界領域でBi-2223 に対して非常に大きい値を持ち高いピン・ポテンシャルを持つことが分かった。これはYBCOとBi-2223 の次元性の違いを示したものである。

現在行っているYBCO-coated 線材の交流損失に対する可逆現象の影響については、現時点でははっきりした結論は得られていない。これは得られた損失のデータがハステロイ基板の影響を含んでいる可能性があるからである。この点については今後の研究で明らかにしていくつもりである。
謝辞

本研究を行うにあたり、多大な御指導、助言を頂いた松下照男教授に深く感謝致します。また、非常に有益な講義、また研究のほかにも人としてのあり方まで説いていただいた小田部荘司助教授、実験や論文作成などにあたっているような助言をしていたいただいた木内勝助手、山内浩太郎氏、その他の松下、小田部研究室の皆様に深く感謝いたします。
参考文献

1) 松下照男 著：磁束ビニングと電磁現象 (産業図書) p.133
2) 松下照男 著：磁束ビニングと電磁現象 (産業図書) p.136
4) 大和秀好: 超伝導体のビニング特性に及ぼす次元性の影響に関する研究 [九州工業大学修士論文 平成10年] p.9
5) 木内勝:Bi系 2223超伝導テープ線材の磁束ビニング特性 [九州工業大学修士論文 平成7年] p.6
6) 木内勝:Bi系酸化物超伝導体におけるビン止めされた磁束線の挙動に関する研究 p28、p.113
7) 松下照男 著：磁束ビニングと電磁現象 (産業図書) p.208