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Chapter 1

Introduction

1.1 Introduction

In 1911 Kamerling Onnes discovered that the electric resistance of mercury
had an unmeasurably small value when cooled to liquid helium temperature
(4.2 K). Such a material was called superconductor. Since then, various su-
perconductors have been discovered. In an early stage, pure metal and alloyed
superconductors were developed, and the study of the superconductors was
advanced. In 1957 the BCS theory was proposed to explain the mechanism
of superconductivity. This theory predicted that the critical temperature at
which the transition to the superconducting state takes place never exceeds
30 K. However, in 1986 Bednorz and Muller discovered a new superconductor
which showed superconductivity at above 30 K.

Soon after that, various oxide superconductors with the critical tempera-
tures above the boiling point of liquid nitrogen, 77 K, such as YBayCu30O,,
BisSryCaCus0,, BisSroCasCu3zO, and so on, were discovered. An applica-
tion of these high-temperature superconductors was desired to various fields
because of economical merits. Especially, a cooling cost was expected to
decrease, since the critical temperature of these oxide superconductors was
higher than the boiling point of liquid nitrogen. However, in the past years, a
difficulty of application of these superconductors was recognized, and nowa-
days not only a discovery of new superconductors with higher critical tem-
peratures and an analysis of their structures, but also an improvement of
superconducting properties necessary for application are required.

When considering an application of superconductors to various equip-
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ments, it is necessary to quantitatively describe their transport characteristic
(the current-voltage characteristic). Although the transport characteristic
of metallic superconductors is fairly simple, that of high-temperature su-
perconductors is quite difficult due to a strong thermal activation at high
temperatures, a two-dimensional superconducting property owing to a crys-
tal structure and so on. Especially, the critical current density decreases
drastically at high temperatures due to the flux creep, as will be mentioned
in section 1.2.2.

Therefore, it is necessary to clarify the flux pinning mechanism in order to
improve the critical current density at high temperatures. For the purpose,
a special theoretical analysis and a suitable measuring method are needed
to describe the transport characteristic. Since the transport characteristic
depends sensitively on the distribution of the pinning force, it is important
to clarify the distribution. This will be helpful to clarify the mechanism of

generation of the electric field in oxide superconductors.

1.2 Electromagnetic phenomena in high-temperature

superconductors

Electromagnetic phenomena in high-temperature superconductors can also
be fundamentally described by the Maxwell equations. In general, since the
superconductor do not have a magnetization, we have B = poH between the
magnetic field H and the flux density B, where g is magnetic permeability
of the vacuum. Therefore, hereinafter, we call B the magnetic field. The

fundamental Maxwell equations are

oB
tE = ——— 1.1
1o 5, (1.1)
for the electromagnetic induction, and
1
J=—rotB (1.2)
Ho

for the current, where E and J are the electric field strength and the cur-
rent density, respectively. Since the physical quantities are B, E and J, the
equation related between E and J is needed in order to describe the electro-

magnetic phenomenon, except two equation as mentioned above, that is the
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FE-J characteristics. This represents the largest feature of the superconduc-
tor. This point is identical with metallic superconductors.

Note, Eq. (1.1) represents the generated electric field when the flux dis-
tribution changes in time, and such a variation is closely related to the flux
motion. If the velocity of the flux lines is given by v, during the variation of

the flux distribution, we have

0B
T
This is called the equation of continuity of flux lines. Comparing Eq. (1.1)
with Eq. (1.3), we have

rot(B X v) = (1.3)

E =B xwv. (1.4)

(Mathematically, we need to add a gradient of some scalar function to this
equation. However, it is proved that the value is zero.) This is called the

Josephson equation.

1.2.1 Critical state model

Even if the flux lines experience the Lorentz force by the current inside the
superconductor, those are trapped due to the force of various defects such
as dislocations, normal precipitates, voids and grain boundaries, and the
electric field is not induced. This phenomenon is called the flux pinning. In
this case we have only to consider the balance between the Lorentz force the
flux lines experience and the pinning force which prevents their motion. This
force balance, which gives a fundamental proof of the E—J characteristics, is
described by the critical state model.

When the flux lines pass near defects such as normal precipitates, the flux
lines feel the variation of energy. This causes the flux pinning and the pinning
force is given by the variation rate of the energy. The Lorentz force the flux
lines experience per unit volume is given by J X B. Since the pinning force
density is in directed opposite to the Lorentz force, if an unit vector in the

direction of the Lorentz force is § = v/|v|, the force valance is described as

J X B —6F, =0, (1.5)



where F}, represents the strength of pinning force. Therefore, we have
J=|J|=J, (1.6)

with J. = Fp/ B. J. is the maximum current density under a static state
(v = 0), in which the electric field is not induced. This is called the critical
current density. At the same time, this state is called the critical state.

If the current density is over J., the force balance is no longer kept and
the flux lines are forced to move. In this case, a force works to prevent the
flux lines from moving. This is called the viscous force and its magnitude
is proportional to the velocity v. It is considered that all flux lines move
continuously in the state, and this state is called the flux flow state. Thus,
the force balance in the flux flow state is given by

J X B—6F, — Env =0, (1.7)

Po

where ¢ is the flux quantum (h/2e = 2.07x 107 Wb, with Planck’s constant
of h = 6.63 x 1073* J.s and the elementary electric charge of e = 1.60 x
1071 C), and 7 is the viscous coefficient. With the aid of Eq. (1.4) this
equation is reduced to

J=J.+ E, (1.8)

Pt

where pr = B¢g/n is the flow resistivity. This equation, which includes Eq.
(1.6) in the static state, describes the E-J characteristics in the supercon-
ductor. Thus, the E-J characteristics are theoretically based on the force

balance on flux lines.

1.2.2 Flux creep

Even if the current density is not larger than J. determined by the pining
strength, the pinned flux lines are sometimes depinned and move under a
finite temperature due to thermal agitation. This is called the flux creep.
The thermally activated flux motion is not a macroscopic and continuous
motion like a flux flow but a discrete and discontinuous one. When the flux
creep takes place, a group of flux lines move collectively. Such a group is

called a flux bundle. Figure 1.1 schematically shows a relationship of the
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energy of flux bundle versus its position. Usually the flux bundle is trapped
at a minimum of the energy. The gradual decrease in the energy shown in the
figure when the flux bundle moves to the right is due to the work done by the
Lorentz force. Therefore, this slope is proportional to the current density J.
If there is no thermal activation, this condition is stable and the flux bundle
does not move. However, the flux bundle trapped at the minimum energy is
depinned with some probability owing to the thermal activation. An attempt
frequency for a flux bundle to try to overcome the barrier within unit time
owing to the thermal activation is represented by 1. The energy barrier, U,
shown in Fig. 1.1 is called the activation energy. The probability for the flux
bundle to overcome the energy barrier at one jump is given by the expression
of Arrhenius, exp(—U/kgT'), where kg is the Boltzmann constant. The value
of activation energy U at zero transport current is the pinning potential U,.
A hopping distance of the flux bundle at one jump seems to be comparable
to a flux line spacing as. Therefore, the averaged velocity of flux lines is given

by asvpexp(—U/kpT). From Eq. (1.4), the induced electric field is given by

/
E = Basyy [exp (_kBLT) — exp (_kZ—T)] , (1.9)

where U’ is the energy barrier for the flux motion in the opposite direction
to the Lorentz force.

One of the issues caused by the flux creep is that the superconducting
current cannot be a persistent one but decreases gradually with time. Here,
we will argue how the superconducting current changes with time under the
flux creep. We treat for simplicity a relaxation of the magnetization of a
large superconducting slab (0 < z < 2d) in a magnetic field H, along the
z-axis. From the symmetry we have to treat only a half, 0 < z < d. In
the increasing field process, the current flows to the positive y-axis and the
motion of flux lines due to the flux creep occurs to the positive z-axis. If
the averaged current density is denoted by J, the magnetic flux density is
B = puo(He — Jx). In terms of its averaged value, (B), the electric field at the
surface, x = 0, is obtained as
_0d(B) pod? . oJ

E = —.
ot 2 ot

(1.10)



Fig. 1.1. Pinning energy of flux bundle vs its position

The coefficient of the exponential in Eq. (1.9), Basvy, is considered as a
constant with an approximation of B ~ ugH,. Then, we can solve Egs. (1.9)
and (1.10), if U is given as a function of J.

If it is assumed that there is no thermal activation, flux lines do not flow
even in the virtual critical state of U = 0. The current density in this state
is represented by J.,. At a low temperature where the effort of thermal
activation is small, it is speculated that the motion of flux lines is not a
continuous one like the flux flow even in the vicinity of the virtual critical

state. In this case U < U’ and the second term in Eq. (1.9) can be neglected.

U decreases with increase of the current density J. This variation may be
approximated as U = UJ — sJ near the virtual critical state. Uj represents
a value of U extrapolated to the limit J — 0, and is not identical with the
real pinning potential Uy, as shown in Fig. 1.2. This is why Uj is called
the apparent pinning potential. As will be mentioned below, U, determines
the critical current characteristics under the flux creep, while U{ is directly
related to the relaxation rate of the magnetization.

From the condition that U = 0 at J = Jy, we have s = Uj/J and

U(J) = Us (1 - Jio) . (1.11)

Hence, the equation describing the time variation in the current density is

given by



Uo

Uo*

Fig. 1.2. Current density dependence of activation energy. When the depedence is approx-
imated by a tangential line around a given current density, its intercept at J = 0

gives the apparent pinning potential, U].

0J  2Ba Us J (1.12)
ot pod® P | kgT Jo) | '

This equation is easily solved, and under the initial condition that J = J
at t = 0, we obtain

J kgT t
—=1- 1 —+1 1.13
oot T ( ), 19

where 7 is a time constant given by 7 = uodchokBT/2Bafl/0U8‘. After a
sufficient time, ¢ > 7, unity in the logarithm in the above equation can be
neglected and the time variation in the current density as shown in Fig. 1.3 is
derived. The apparent pinning potential energy, UJ, can be estimated from

the logarithmic relaxation rate:

B d J _ kT (1.14)
dlogt \ Jeo US '

U is usually estimated from a measured magnetic relaxation rate, since the

current density J is proportional to the magnetization M. In this case, J/J
is replaced by M /M, with M, denoting the initial magnetization.
Here we assume for simplicity that the energy of the flux bundle varies

sinusoidally with its x as

U
F(z) = 7osin kx — fiz, (1.15)

7



\

logt

Fig. 1.3. The relaxation of the magnetization due to the flux creep.

as shown in Fig. 1.1. In the above, k = 27 /as is the wave number and fp,
is the Lorentz force on the flux bundle. If the volume of the flux bundle is

V, we have f;, = JBV. The equilibrium of the flux bundle is obtained by
derivating Eq. (1.15) with respect to  and is given by

1 2
T =——cos ! i = —x. (1.16)

k Uok
On the other hand, F(z) is locally maximum at x = z. Hence, the energy

barrier is obtained as U = F(xy) — F(—x). That is,

21\ 2r 2f
1— (U_II::) 2L cos7! <—L> (1.17)
0

- Upk Uok
As mentioned above, the virtual critical state with U = 0 will be attained,

U

Uo

if there is no thermal activation. In this case xy = 0 is attained, and hence,
2f1./Uogk = 1 is satisfied from Eq. (1.16). The requirement that the J value

in this case is J. o leads to

2L J _ .
—_— = — =7. 1.18
Uk Jo  ° (1.18)
In terms of the normalized current density, j, Eq. (1.17) is described as
U
(gj) = (1— )2~ jcos ! (1.19)
0

When J is much lower than J., the flux motion in the opposite direction
to the Lorentz force can no longer be neglected. The activation energy in this
direction is U’ = U + fras. From k = 2m/a¢ and Eq. (1.18), U’ is given by

8



U'(j) = U(5) + jUor. (1.20)

Using this relation, Eq. (1.9) is written as
U(y Uy
E = Basyyexp [— k]ié’)] [1 — exp (—ZB;?)] : (1.21)

Therefore, if the pinning potential U, and the virtual critical current density

J.o are given, the current density vs. the voltage characteristics under the
flux creep can be evaluated.

It is theoretically derived? that the attempt frequency of the flux bundle
is given by

_ CprCO
2mas B’

where ( is a constant depending on the kind of pinning centers. Namely,

2 (1.22)

¢ ~ 27 is derived for point-like pinning centers? and ( = 4 is for large
and strong pinning centers such as normal precipitates®. According to the
Bardeen-Stephen model?, the flux flow resistivity is related to the normal

resistivity p, as
B

p(T) = 3 pa(T) (1.23)

In high-temperature superconductors p,(7') almost linearly changes with tem-

perature. Hence, we assume as p,(T) = (T/T.)pu(Te).
If the second term in Eq. (1.20) is sufficiently smaller than kg7, the
electric field in Eq. (1.21) is written as
wBasvgUyJ Uy
“JoksT <_kB—T) !
where the fact that U approaches Uy in the range of sufficiently small J

E ~ (1.24)

is taken into consideration. Equation (1.24) shows that the current-voltage

characteristic is ohmic, and the electrical resistivity is obtained as

Uo
= —— 1.25
p=mesp (%), (1.25)

where py = wBasvyUy/ JoksT can be approximately regarded as a constant in
a narrow region of temperature. Hence, U, can be estimated from the slope
of the relationship of log p vs 1/T. Equation (1.25) shows that the resistivity
is not perfectly zero even at very small current density at a finite temperature

due to the flux creep.



1.2.3 Critical current density and irreversibility field

As argued in the last section, the superconducting current originated from
the flux pinning decreases with time, owing to the flux creep. Since the flux
distribution charges with this relaxation and the electric field is generated as
shown in Eq. (1.9), the critical current density is smaller than the virtual
value Jo. If the critical current density is defined in terms of the electric field
criterion, F = F,. (for example, 1.0 X 10™* V/m), the critical current density

J. can be determined by

U(J.
E. = Basvyexp [— k( T)] . (1.26)
B

When the flux creep becomes more drastic, the electric field of the order of
the criterion is easily generated even under a small current density, and the
critical density is practically zero. The magnetic field B; at which the critical
density is zero is called the irreversibility field. Since the activation energy
is equal to the pinning potential when J = J. = 0, the irreversibility field
Bi(T) is determined by

E. = Basvpexp [—%;T)] .

It is necessary to describe U, as a function of B and T to obtain a theoretical

(1.27)

expression of B;(T).

1.3 Flux creep theory

As described in the last section, the flux creep is an activated motion of
flux lines. This causes various phenomena such as a logarithmic relaxation
of the magnetization and the irreversibility field. All these phenomena are
determined by the pinning potential U,. Here, we shall theoretically estimate
Uy.

According to experimental results, when the flux lines are displaced from
the critical state in the opposite direction, the pinning force density changes
continuously from J.B to —J.B as depicted in Fig. 1.4. That is, the pinning
force density varies almost linearly with the displacement u and the phe-

nomenon is reversible, if the displacement is small. The variation rate of the
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force density, o, is called Labusch parameter. This parameter represents the
pinning strength. According as the displacement of flux lines increases, some
flux lines jump out of individual pinning potentials locally and the pinning
force density varies gradually from reversible to irreversible with the displace-
ment. The characteristic displacement d; representing the boundary between
reversible and irreversible motion is called the interaction distance. This gives
a radius of the averaged pinning potential. When the displacement is further
increased, the pinning force density approaches asymptotically —J.B and the
phenomenon becomes describable by the irreversible critical state model. We
have the relationship apd; = J.B (see Fig. 1.4). However, we should note
that the pinning potential U, cannot be the same as the potential evaluated
from experimental results. We assume that a similar phenomenon occurs in
the virtual creep-free case where J. is replaced by J.. Hence, ard; = JoB is

derived.

-F
A
B )
o=d, /!
/
V4N
1
1
0 |
I
:
1
oL :
- B L > U
0 2di

Fig. 1.4. Variation of pinning force density with displacement of flux lines.

Integrating the pinning force density with respect to the displacement u
from O to d; in Fig. 1.4, the averaged pinning potential per unit volume, ljo,
is estimated as

. ar.d?
Uy = L2 L (1.28)

Using ¢ described above, the interaction distance d; is theoretically given by

as

di=—. :
: (1.29)

11



The pinning potential Uy is given by a product of U, and the volume of the
flux bundle V:

Uy = U,V. (1.30)

It is to be noted that the volume of the flux bundle V is very important,
since it influences the value of the pinning potential.

According to the collective flux creep model the flux bundle in a bulk
superconductor is considered as schematically shown in Fig. 1.5(a). The
longitudinal and transverse sizes, L and R, which are defined with respect to
the direction of applied magnetic field, are different, and the volume of the

flux bundle is expressed as
V = LR* (1.31)
The longitudinal flux bundle size is given by
O\ 12 B 1/2
L= (ﬁ) — ( at ) , (1.32)
ar, CroJeo

where is Cy is the elastic modulus of flux lines for bending deformation, given

by

Cuy = ——. 1.33
= (1.33)

On the other hand, the transverse flux bundle size, R, is given by
o\ /2
R= (ﬁ> : (1.34)
ar,
where Cg¢ i1s the shear modulus of the flux line lattice. Its value depends
sensitively on the state of the flux line lattice. When the flux lines form a

perfect triangular lattice, we have
B2B B\’
Clg = — (1 — ) : (1.35)

Cee becomes smaller according as the lattice becomes imperfect, and it is zero

when the lattice melts.

The state of the flux line lattice, which is strongly influenced by the flux
creep, cannot be determined apriori. This means that Cgg cannot be esti-
mated deterministically. Usually R takes on a value of the order of the flux

line spacing a¢, and it is expressed as

12



R = gay, (1.36)

where g2 represents the number of flux lines inside the flux bundle. When
the state of the flux line lattice is close to a melt state and/or when pins are
very strong, the theoretically estimated value of R is lower than a;. But, the

minimum g2 should be one. From Egs. (1.34) and (1.36), g* is given by
2 CG6

-2 1.37
I CJoBas (137)
When the flux lines form a perfect triangular lattice, Eq. (1.37) leads to
CO
2 66
= — 1.38
9e ™ CJeBar’ (1.38)

which gives the maximum value of ¢2.

As mentioned above, the value of Cgq cannot be estimated deterministi-
cally. From the thermodynamic viewpoint, it is assumed that g2 is determined
so that the critical density under the flux creep takes on a the maximum value
%). The second term in Eq. (1.9) is neglected for simplicity. If Eq. (1.11) is
used, the critical current density under the flux creep is given by

kT Basg
Jo=Jg |1 - 1 . 1.39
o[- ()] (139

We have J = J. = 0 and the apparent pinning potential U] is equal to the
real pinning potential Uy at the irreversibility field. It is assumed that the
value of g is y(< 1) times as large as the value of g. given by Eq. (1.38):

g = YGe. (1.40)

In the above the longitudinal flux bundle size is considered as a constant, since
the elastic modulus of flux lines for bending deformation, Cy4, depends only
on the magnetic energy and does not depend on defects of the flux lattice.
Therefore, the correlation volume is proportional to y* from Egs. (1.36) and
(1.31). The virtual critical current density in the flux creep-free case, J, is
y~! time as large as the value, J.., when ¢ = g.. As will be mentioned, the

3/2

pinning potential Uy is given by Eq. (1.46). Hence, U, is y*/* times as large

as the value U, when g = g.. Therefore, the critical current density is given

by
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J.. knT B
Jo= e g - BL g, (2470 |
y Uey?/? E.

(1.41)

From the condition that this derivative with respect to vy is zero, the maximum

condition for J. is given by

B 5k]3T1 Basvg 2/3
Y= ou, "\ TR, '

Therefore, from Eq. (1.40), g% is given by

4/3
S g [5kBT1n (Bafl/o)] / |

20U, E.

Thus, we have

0.835¢%kpJ..?
Up = 321/

(1.42)

(1.43)

(1.44)

When the thickness of the superconductor d is smaller than the longitudi-

nal bundle size L as shown in Fig. 1.5(b), the volume of the bundle is given

by
V = dR>.

Thus, the pinning potential is obtained as

4.23¢%kgJeod
Uy =
CBl/2

14

(1.45)

(1.46)
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Fig. 1.5. Diagram of the flux bundle when the longitudinal flux bundle size L is (a) smaller
and (b) larger than the thickness d of the superconductor.

According to the scaling relation of the pinning force density known for
metallic superconductors, we assume that the temperature and magnetic field

dependencies of the creep-free critical current density are expressed as

1— <%)2 mBW—1 (1— ; )6, (1.47)

c2
where the empirical temperature dependence of the upper critical field is

Jo=A4A

given by

(1.48)

Beo(T) = Bey(0) [1 - (%)2

In the above m, v and 6 are numerical parameters depending on the kind
and strength of pinning centers.

Using the pinning potential Uy for d larger than L, we will analytically
estimate the irreversibility field B;. For simplicity, if the distribution of the
pinnig force is disregarded, using Eqgs. (1.47), (1.27) and (1.44), we have

2 2™
g2z _ (BN 1, _ (T
1 T T.
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where K is an approximately constant value given by

0.835g2A'/?

K =
(In(Biasy/ E.)’

(1.50)

where the value of In(Bjasvy/E.) is approximately a constant because of the
logarithmic function. It is to be noted that Eq. (1.49) is valid when B; is

sufficiently smaller than B.s.

1.4 Various measurements of the F-J characteristic

Recently various measurements were performed to evaluate the FE-J charac-
teristic of high temperature superconductors in a wide range of the electric

field. Here, some measuring methods are briefly introduced.

1.4.1 Measurement of the E-J characteristic in the range of high
electric field

1. Four probe method (resistive method)

In this method, the current is transported directly to the specimen in a
magnetic field, and then F and J are simply calcuated from the generated
voltage and the applied current, respectively. Althouth the measurement
is simple, the measurement in the range of low electric field is difficult

because of a limited sensitivity of instruments. Usual measurements are
done in the range of 107° ~ 1072 V/m (see Fig. 1.7).

1.4.2 Measurement of the F-J characteristic in the range of low
electric field

As for the measurements in the range of low electric field, there are following
methods, in all of which the E-J characteristics are estimated indirectly by
analyzing measured results of the magnetization of the specimen. In one
method a relaxation of the magnetization is measured in a constant magnetic
field, and in the other methods the magnetization is measured in a sweeping

magnetic field.
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1. Relaxation measurement in a constant magnetic field

In this method, the current density is estimated from the measured mag-
netization, and the electric field is estimated from the time variation of
the magnetization and then, the E-J characteristic is given. The mag-
netization can be measured using a SQUID(Superconducting Quantum
Interference Device) magnetometer, a Hall sensor and a VSM (Vibrating
Sample Magnetometer). The SQUID (see Fig. 1.6) is useful to measure
the characteristic in lower range of the electric field than the Hall sensor
(see Fig. 1.7).

2. Magnetization measurement in a sweeping magnetic field

In this method, it is possible to change largely the level of electric field by
changing the sweep rate of external magnetic field. The current density
is estimated from the measured magnetization. The magnetization can
be measured using the VSM, the Hall sensor and pick up coils. For

example, Fig. 1.8 shows the E-J characteristics measured by Mawatari
et al. ® using the VSM.

1.4.3 E-J characteristics in a wide range of the electric field

Using the four probe method and the magnetization method with a Hall sen-
sor, Nakamura et al.” evaluated systematically the temperature dependence
of the E-J characteristics in a wide range of the electric field, as shown in
Fig. 1.7. As can be seen at 61.2 K for example, concave In E-In J curves are
observed in the low range of the electric field by the magnetization method,
although flux lines are expected to be in the so-called glass state judging from
the curves in the high electric field range obtained by the four probe method.
Namely, S-shaped In E-In J curves are observed. This suggests that the tran-
sition temperature, 7,, depends on the range of the electric field. On the
other hand, in the vortex glass-liquid transition model, it is predicted that
the critical indexes given by the scaling are general material parameters, as
will be described in the next section 1.5. However, the above result suggests

that the critical indexes depend also on the electric field.
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Fig. 1.6. The F-J characteristics by the magnetization method wusing a SQUID

magnetometers) .

Fig. 1.7. Temperature dependent E-J characteristics in YBaCuO thin film at 0.52 T ob-
tained by the four probe method (top) and the magnetization method (bottom).
Temperature was changed in the range of 61.2 K ~ 90.4 K for the four probe
method, and 25.5 K ~ 72.3 K for the magnetization method?.
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Fig. 1.8. The E-J characteristics by Mawatari et al.®)
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1.5 Vortex glass-liquid transition model

The vortex glass-liquid transition model assumes that the thermodynamic
phase transition of the flux line system occurs and a scaling of the FE-J curves
near the transition point is considered as a proof of the transition. However,
the transition point itself is not discussed in the theory. Various experimental
results show that the transition point is determined by the pinning strength.
This is essentially the same as the prediction of the flux creep model. But,
there are some different points between the flux creep model and the vortex
glass-liquid transition model. One of them is that the electric resistivity
becomes zero in the vortex glass-liquid transition model when the current
density J approaches zero, while a finite value of electrical resistivity remains
in the flux creep model as shown in Eq. (1.25).

Fisher et al.” assumed that the glass phase of flux lines could be charac-
terized by the coherence length. It is also assumed that the coherence length
diverges as {; ~ |T — T,|™" in the vicinity of the transition temperature Ty,
where v is a static critical index. At the same time the relaxation time of flux
line system is assumed to diverge as 7 ~ &;°, where, z is a dynamic critical
index. According to Fisher et al., the E-J characteristic is given by
5,

where d is the dimensionality of flux lines, and f, and f_ are functions defined

B(J) = J&57 ful (1.51)

in ranges of T' > T, and T' < T, respectively. In the above Jj is the current
density corresponding to the critical current density in the vortex glass state

when T' < T, and is given by

Jo = %, (1.52)
where ¢¢ is a flux quantum. Jjy is zero when 7" — T,. On the other hand,
since the resistivity is ohmic in the vortex liquid state even when J — 0, f.
is needed to approach a constant as J — 0. In this case, therefore, the ohmic
resistivity is given by p ~ (T — T)"*+2=9).

Fisher et al. assumed also that the current-voltage characteristics are

given by
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E ~ exp [— (?)N] | (1.53)

where Jr is a parameter which has a dimension of current density depending
on temperature and p is a parameter satisfying 4 < 1. That is, the resistivity
p disappears in the glass state in which the flux lines freeze.

On the other hand, since J/Jy = z approaches infinity in the transition
point at finite E and J, and Eq. (1.51) is given by E o z(4=2=2)/d=D ¢, (g),
fi(z) ~ 2G*+2=9/(@=1) is led in this limit. Therefore, when T = Ty, the

current-voltage characteristics are given by a power law function:
E o JE+2=/(d-1), (1.54)

These indexes are estimated by experiments of the E-J characteristics as
shown in Fig. 1.9. This figure shows the experimental example of the E-J
characteristics in an Y-123 film at various temperatures and magnetic field
of 4 T. From the measured results, it is known that the F-J curves change
from convex to concave across the transition point with increasing temper-
ature. First, z is estimated at the transition temperature at which the E-J
characteristic is given by the power law function as Eq. (1.54). Next, the
value of v is adjusted, so that (E/J)/|T — To|"*™Y vs J/|T — T,|* curves
would scale. Figure 1.10 is the scaled result of the experiment in Fig. 1.9. In
this case, the evaluated indexes are v = 1.7 and z = 4.8.

On the other hand, it is reported that the current-voltage characteristics
estimated by the flux creep-flow model is also well scaled as mentioned above,
and the scaling parameters evaluated from the experiment are theoretically
explained. However, these two theoretical models are not exactly the same.
From the viewpoint of the vortex glass-liquid transition model, it is considered
that the vortex glass state is determined only by their own nature, and when
flux lines are in this state, those can be pinned and irreversible magnetic
phenomena occur. When those are in the liquid state, those cannot be pinned,
resulting in reversible phenomena. On the contrary, in the flux creep model, it
is suggested that, since the flux pinning works effectively against the thermal
agitation in the region below the transition curve, flux lines can be regarded

to be in the glass state. When the flux pinning is not effective as in the
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Fig. 1.9. Example of observed E-J characteristics in an Y-123 film at various temperatures
and magnetic field of 4 T,

Fig. 1.10. Scaled result of E-J characteristics using the analysis of the vortex glass-liquid

transition model?).
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region above the transition curve, those are regarded to be in the liquid state.
That is, the concept of the flux pinning is considered to be more essential.
Note that the thermal depinning itself is a second-order phase transition'?,
and this gives a theoretical proof for the scaling of the E-J curves. On the
other hand, in the vortex glass-liquid model, it is considered that the scaling
parameters take on constant values peculiar to materials independently of
temperature, magnetic field and electric field. However, in fact, the scaling
parameters depend on the electric field as mentioned in section 1.4.3. It
was also reported that these parameters depend also on temperature **. In
addition, the transition point depends on the flux pinning strength '¥). These
results show that the critical indexes given by the scaling are not general

material parameters, but are strongly related to pinning mechanism.

1.6 Summation problem

The macroscopic pinning force density, F,, = J.B, which is the force on flux
lines by pinning centers in a unit volume is a function of the elementary
pinning force, f,, the number density of pinning centers, /V,, and the density
of flux lines, i.e., the magnetic field, B. It depends also on temperature, T,
through the elementary pinning force. The problem to theoretically estimate
F, as a function of these factors is called a summation problem. It is to be
noted that the critical current density which is directly estimated from Fj is

the virtual value in the absence of flux creep.

1.6.1 Metallic superconductors

In metallic superconductors, the distribution width of the local pinning force
density is narrow enough. In addition, the ambient temperature is very low
due to low critical temperatures. Hence, the effect of thermal activation can
be disregarded in most cases. In such a case, the distribution of the critical
current density and the E-J characteristic are represented in Fig. 1.11(a)
and (b), respectively. When the applied current density is larger than the
critical current density (J), all flux lines are depinned and go to the flux

flow state with a generated resistivity. In addition, artificial pinning centers
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Fig. 1.11. (a) Distribution of critical density and (b) E-J characteristic in metallic supercon-

ductors.

can be successfully introduced into materials.

1.6.2 High-temperature oxide superconductors

On the other hand, the high-temperature superconductor depends largely
on the thermal activation motion, a weak rink, the layer crystal structure
and so on. Moreover, the wide distribution of the force is considered in the
elementary pin, since the technology to introduce a pin with uniform strength
intentionally is not established. In practical cases, the E-J characteristic
appear gradually due to above causes as shown in Fig. 1.12 and is different
from the metallic superconductor such as Fig. 1.11, and this behavior is
complicated. It is not merely assumed that the critical current density is
a constant J. parameter as before. That is, the wide distribution of J. is

expected.

1.7 Percolation flow model

As mentioned in above section, in the usual metallic superconductor, since
it is possible to introduce the uniform pin of the strength, the estimation
of the material and the E-J characteristic is estimated using the constant
parameter representing the critical current density, J.. However, in the high-

temperature superconductor, the behavior is complicated, and the E-J char-
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Fig. 1.12. The diagram of the E-J characteristic in the high-temperature oxide superconduc-

tor.

acteristic cannot be described using a parameter for critical current density
J., due to the thermal activation motion, a weak rink, the layer crystal struc-
ture and so on. Therefore, it is assumed that the distribution of the critical
current density is shown in Fig. 1.13 in the high-temperature superconductor.
Moreover, it is assumed that the current transport characteristic is governed
by the percolation process, which the pinned flux lines are depinned out of the
pin and then the unpinned cluster grows gradually. From these assumption,
it is proposed that the E-J characteristic is described using a percolation
flow model. Here, it is mentioned simplely about this model.

ctitical

As the current is increased, the unpinned cluster grows. When the un-
pinned cluster size reaches the percolation limit, the electric field due to the
flux flow is induced along the percolation path. The threshold value of in-
duced current in this case represents the minimum of the critical current.
This process is shown in Fig. 1.14.

In ideal system with the uniform pinning force for an usual metallic super-
conductor, all of pinned flux lines are depinned at a blast at a critical value.
In other words, a function of the depinning probability is given by a step
function. On the contrary, in the confused system like the high-temperature
superconductor, pinned flux lines are depinned with a spread from the per-

colation threshold. That is, a distribution of the critical current occurs.
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Fig. 1.13. The distribution of the critical current density assumed in the percolation flow

model.

Fig. 1.14. Unpinned cluster
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Therefore, in this model, the distribution of the critical current density is
assumed using three parameters as shown in Fig. 1.13. In this case, Jon
represents the minimum of J. (the percolation threshold), and Jy represents
the half width of the distribution, and m/' is the parameter depending on the
form of the distribution. If it is assumed that the flow resistivity, p¢, is a
constant in the elementary FE-J characteristic, from the distribution of the
critical current density, the theoretical equation of E-J characteristic is esti-
mated. In this case, it is reported that the probability density function Q(J)
can be described by the Weibull function. In the vicinity of the percolation
threshold, Q(J) can be approximated by ((J — Jewm)/Jo)™. Therefore, the

E-J characteristics can be written in analytical form as follows.

B(J) = p / Q(1)dJ
Pt

J ml J ml+].
— J (—) (1 — cm) ; B < Bq,
41 J, J
e o (1.55)
pt J\"
B m'+1J<70> ; b= Ba

Pt |Jcm| m J '+
= P g (el 1 ~1\. B> B
e ‘( T ) {( LA > Bar

where Bgr, represents the magnetic field when J.,, = 0. Using this percolation
flow model, the E-J characteristics can easily be calculated in a high range
of the electric field (107° ~ 1072 V/m) using a usual resistive method. This
is an advantageous point of the percolation model in comparison with the
flux creep-flow model in which a complicated calculation is needed.
However, in this model, the flux motion under a significant thermal ac-
tivation as shown in Fig. 1.1, is approximated by an equivalent flux flow by
making the pinning potentials shallow as shown in Fig. 1.15. Therefore, in
the creep region of a very low electric field such as 107° V/m, the theoret-
ical prediction deviates from experiment due to a part of flux creep which
was neglected. Hence, the extensive percolation flow model was proposed '*
Since the pinning potential is shallowed by U; for activated flux lines, the

height of potential barrier which these flux lines feel is AU as illustrated in
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Fig. 1.15. Pinning potential is regarded to be made shallow by U; due to the movement of

pinned flux bundle in the percolation model.

Fig. 1.1(b). Arrhenius’ expression was assumed for the probability for flux
lines to overcome the barrier. The electric field due to the flux creep is added
to that due to the equivalent flux flow. It is simply assumed that a magni-
tude of AU is proportional to that of J.. The applicability of this assumption
will be argued elsewhere. In addition, the attempt frequency v is assumed
as a fitting parameter and a value of the order of 107 Hz is used to explain
experimental results at low electric fields .

On the other hand, in this study, the obtained results are explained by a
theoretical analysis based on the flux creep-flow model in which the distribu-
tion of flux pinning strength is taken into account. In this model, as the detail
mentioned in section 3.1, the E-J characteristics are determined by the flux
creep, a discontinuous flux motion by thermal agitation and the flux flow,
a continuous flux motion, by the Lorentz force. Therefore, the percolation
flow model and the flux creep-flow model are essentially based on the same

mechanism. Comparison between two models is mentioned in section 3.2.
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1.8 Aim of the study

In this study, using a four probe method (resistive method) and the relax-
ation method of the magnetization using a SQUID magnetometer, the E-J
characteristics in superconducting multifilamentary Bi-2223 silver-sheathed
tape are evaluated. Using the both methods, it is possible to evaluate the
FE-J characteristics in a wide range of the electric field. The evaluated results
is compared with the theoretical results by the flux creep-flow model, which
is taken the distribution of the flux pinning into account.

On the other hand, from an analysis of E-J curves with the aid of the
flux creep-flow model, the ratio of contribution from the flux flow to the
total electric field is estimated. It is clarified that most of the electric field is
caused by the flux creep even in the range of electric field in usual resistive
measurement. It was found that a difference of the attempt frequency of flux
bundle between the two models can be explained by a depth of shallowed
pinning potential. Moreover, it is clarified that the percolation flow model
is consistent with the flux creep-flow model from the comparison between
the two models. This gives a theoretical proof for the parameters of the
percolation flow model.

A pinning potential Uy is an important parameter determined an irre-
versibility field, a relaxation rate of a superconducting current and so on,
including the above E-J characteristics. But, the quantitative Uy was not
estimated widely, although the apparent pinning potential Uj is estimated
from a relaxation of the magnetization and so on. In the past, the U, was
estimated from an analysis of the E-J characteristics and the irreversibility
field B;. In this study, using the magnetization relaxation method, an ohmic
E-J characteristics in a TAFF(thermally activated flux flow) region are mea-
sured. Comparing between the evaluated results and the creep theory, the
quantitative U, is estimated and is compared with the values estimated by

the past methods.
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Chapter 2

Experiment

2.1 Specimen

Specimen was a superconducting multifilamentary Bi-2223 silver sheathed
tape prepared by the powder-in-tube (PIT) method, and was manufactured
by Vacuumschmelze company. Since such a long tape with a good quality
can be manufactured, the material is now widely used for applications such
as a magnet, a cable and so on.

The silver sheath of the tape works as a protective material to absorb a
stress on the tape. It also works as a shunt material when an excess current
is applied to the tape. However, this makes the experiment difficult to esti-
mate the E-J characteristic only of the superconducting filaments. For this
purpose, a simple model was used in which the tape was approximated by a
parallel circuit of the superconductor and the silver matrix.

The number of superconducting filaments f in the tape specimen was 59,
and the averaged width w and thickness d were 320 ym and 11 pum, respec-
tively. The critical temperature measured by a DC magnetization method,
T., was 110 K.

2.2 Experimental method

In this study, the four probe method (the resistive method) and the DC
magnetization method using a SQUID magnetometer were used, in order to
evaluate the F/—J characteristics in the Bi-2223 silver sheathed tape. The
former is used in the range of high electric field (10™° ~ 1072 V/m), while
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Fig. 2.1. Four probe method (resistive method)

the latter is used in the range of very low electric field (107! ~ 107 V/m).

2.2.1 Four probe method (resistive method)

Terminals of current and voltage were attached to the specimen as seen in
Fig. 2.1. At a constant temperature 7" and a magnetic field B parallel to the
c-axis, a pulsed current I by one second was applied to the specimen, and
the generated voltage V was measured by the voltage terminals of distance

L about 10 mm. The E—J characteristic was estimated using the following

equations:
1
J=— 2.1
wdf’ (2.1)
v
E=—. 2.2
d (22)

The pulsed current was useful in order to prevent the temperature of the
specimen from increasing by the Joule heat when the current was applied.
On the other hand, during the soldering between the specimen and the volt-
age terminal, we enlarged the contact area so that the current could flow
uniformly. In the measurement, the specimen was placed in an atmosphere
of helium gas, and the temperature was controlled using a heater and by
controlling a flow rate of helium gas. The temperature of the specimen was

measured using a thermocouple fixed to the surface of specimen.
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2.2.2 Magnetization method using a SQUID magnetometer

In this measurement, a SQUID(Superconducting Quantum Interference De-
vice) magnetometer (MPMS-7) was used. The tape was cut in the length [
of 4.2 mm. A DC magnetic field of a sufficient strength was applied parallel
to the c-axis of the specimen and was decreased to a desired strength. This
put the specimen in the critical state with fully trapped magnetic flux. In
this condition the induced superconducting current flowed inside the speci-
men. Then, the relaxation of the magnetization was measured. In section
2.2.3, the strength of the initially applied magnetic field necessary for the
measurement will be described. The shielding current density was estimated
from an irreversible component of the magnetic moment m. The electric field
at edge of the filament was estimated from a variation of m with time using
the Maxwell equation. Thus, the E—J curves were estimated from the relax-
ation measurement of the magnetization. The detailed analysis is described

in Appendix A. The equations used for the estimation are:

12m
= w2df (31 — w)’ (2:3)
E= o dm (2.4)

C2df(l+w) dt
In the above the flux distribution in all superconducting filaments was as-

sumed to be in the critical state described by the Bean model.

SQUID magnetometer

The SQUID is made up of a superconducting loop with the Josephson junc-
tion. Using this, the periodical value of the current density with the increase
of the flux can be measured. Therefore, the SQUID is a the high-performance
magnetic sensor. In this MPMS, an superconducting magnet was shared in-
side the instrument, and a magnetic moment was measured by automatic
controlling. In this system, the sample is positioned below the detection coils
and is set at its lower limit of travel. Then, the sample is raised through the
coils while measuring the output of the SQUID detector.

In its initial position, the sample should be far enough below the detec-

tion coils so that the SQUID did not detect the sample moment. The sample
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Fig. 2.2. A second-order gradiometer coil and SQUID output response to sample scan.

was then typically measured by repeatedly moving the sample upward some
distance and reading the voltage from the SQUID detector. If the SQUID
voltage was read at a large number of points, the voltage could be plotted
as a function of the sample position, as shown in Fig. 2.2. A set of such
data was a scan. The shape of the curve was a function of the detection
coil geometry used by this system. As shown the left hand in Fig. 2.2, the
coils were wound in a second-derivative configuration in which the upper and
lower single turns were counterwound with respect to the two-turn center
coil. The coils were called a second-order gradiometer coil. This configura-
tion strongly rejected interference from nearby magnetic sources and lets the
system function without the need for a superconducting shield around the
SQUID sensing loop.

Using the Full Length DC Scan method, the magnetic moment was com-
puted as the square root of the sum of the squares for the number of data

points. This process minimizes errors due to volume variations in the sample.

2.2.3 Sufficient value of the initial magnetic field applied to the

specimen

Before starting the relaxation measurement, an external magnetic field of
a sufficient magnitude B,, was first applied to the specimen, and then, de-

creased to a desired value for the measurement, B,, as described in section
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2.1.2.

The flux distribution in the specimen can be analyzed using the Bean
model. The left figures in (a) ~ (d) of Fig. 2.3 show the flux distribution
while the magnetic field is increased to B, and the right figures show the
flux distribution while the magnetic field is decreased to B..

From this result it is seen that the initial magnetic field B, should be
stronger than B, + 2B, so that the specimen is the critical state.
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Fig. 2.3. Variation of flux distribution in a half of the specimen. The left figures in (a) ~
(d) show the flux distribution while the magnetic field is increased to B, and the
right figures show the flux distribution while the magnetic field is decreased to Be..
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Chapter 3

Result and discussion

In this chapter, the E-J characteristics in superconducting multifilamentary
Bi-2223 silver-sheathed tape are evaluated in a wide range of the electric field
from the experimental results of the four probe method and the magnetization
relaxation method. The evaluated results are compared with the theoretical
results of the flux creep-flow model'”. In the theoretical analysis, the ratio of
contribution from the flux flow to the total electric field is estimated. A dis-
cussion will be given on a relationship between the pinning parameters used
in the flux creep-flow model and the fitting parameters used in the percola-
tion flow model, which describe the E-J characteristics phenomenologically.
Moreover, a value of Uy is estimated from an ohmic E-J characteristic mea-
sured in the range of TAFF state with the flux creep theory, and the result

is compared with the values estimated by other methods.

3.1 Flux creep-flow model

We will here explain the flux creep-flow model '”, in which the distribution
of flux pinning strength and the thermal motion of flux lines are taken into
account.

Assume a virtual case in which the thermally activated flux creep does
not take place. Using the critical current density in this case J., the electric

field due to the flux flow, Ey, is given by
Eg = 0; J <1,
= (T —Ja) i> 1, (3.1)
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where j = J/J. and pr represents the flow resistivity, which is estimated
as p; = (B/Bc)p, using the Bardeen-Stephan model”. In high-temperature
superconductors the normal resistivity p, varies with temperature as p, =
(T/Te) pu(Te).

In the actual case, the electric field is generated even at j lower than 1.
This is due to the flux creep as shown in section 1.2.2. From Eq. (1.9), the
electric field is given by

E.. = Basvpexp [— Zé;)] ll — exp (—Zﬁf)] 1 <1
When 5 > 1, it is considered that the contribution of the flux creep is a

constant and we assume the value is given with 7 = 1. In this case, since the
activation energy U is zero, we have
FE.. = Basyy [1 — exp (—ZB—U;)] ; 7 >1
Therefore, under the flux creep, the current-voltage characteristics is esti-
mated by the pinning potential Uy and the virtual critical current density
Jeo-
Since the electric field is contributed by the flux creep and the flux flow,

here we assumed that the total electric field is approximately given by

E = (E% + E})'/~ (3.3)

cr

In fact, when j < 1, E is only E., of the electric field due to the flux creep.
While, when 5 > 1, Eg has a majority in it. Therefore, this approximate
estimate is considered to be good.

While, it is generally well-known that the J., in an oxide superconductor
is widely distributed. This includes the essential distribution of the pinning
force. Moreover, in fact it is considered to include the influence of the weak
links and the sausaging and so on. The weak links make J.o decreased increas-
ing a temperature. The sausaging is that the thickness of the fine filaments
is not uniformity. In this paper we use the practical distribution of the pin-
ning force. Therefore, we simply assume that the only A in Eq. (1.47) is

distributed as
(logA — log Ay, )?

A) = Kexp |—
F(A) = Kexp e E

(3.4)
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where A,, is the most probable value, K is a constant determined by the
condition of normalization and o2 is a constant representing the degree of
deviation.

Therefore, if the parameters is given, the E-J curves in the total of a

superconductor can be estimated as
E(J) = / Ef(A)dA. (3.5)
0

The pinning parameters and o2 are determined so that a good fit is obtained

between the experimental and theoretical values of the critical current density

J.(B,T).

3.2 Comparison between the experimental and theo-

retical F/-J characteristics.

Figures 3.1 ~ 3.5 show the E-J curves at 40 ~70 K evaluated from the four
probe method (top) and the magnetization relaxation method (bottom). The
electric field in the relaxation method is of the order of 107! V/m and is 6
to 7 orders of magnitude lower than the four probe method. Therefore, the

FE-J characteristics are evaluated over a quite wide range of the electric field.
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Fig. 3.1. Comparison of E-J curves between experiment (symbols) and theory (lines) at
40 K.
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Fig. 3.2. Comparison of E-J curves between experiment (symbols) and theory (lines) at
50 K.
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Fig. 3.3. Comparison of E-J curves between experiment (symbols) and theory (lines) at
60 K.
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Fig. 3.4. Comparison of E-J curves between experiment (symbols) and theory (lines) at
70 K.
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Fig. 3.5. Comparison of E-J curves between experiment (symbols) and theory (lines) at
70 K. Experimental results are obtained by four probe method (top) and the
magnetization method (bottom). (a) represents original data and E-J caves of the

four probe method are displaced b)isa factor 1.4 in the direction of higher .J in (b).



The solid lines in Fig. 3.5(a) are the theoretical E-J curves at 70 K which
will be argued later. As seen in this figure, the deviation between the experi-
mental and theoretical results is different between the high electric field range
and the low electric field range. This is considered to be caused by a sausag-
ing of superconducting filaments. That is, J in the magnetization method
is an average value, while J in the four probe method is mostly determined
by narrow regions of filaments. Usually the latter is larger than the average
value. Actually, if E-J curves of the four probe method are displaced by a
factor 1.4 in the direction of higher J as shown in Fig. 3.5(b), the curves in
the two regions coincide with each other. In fact, the difference of factor 1.4
can be explained by the observed distribution of superconducting filaments.

Values of A,,, m and ~ listed in Table 3.1 are used in the numerical
calculation in a wide range of temperature and magnetic field. According
to Eq. (1.43), ¢* depends on F as well as on B and T. In this study, for
simplicity, the F in Eq. (1.43) is considered as a constant of £ = 1071° V /m,
which is representatively determined by the electric field criterion, E., in
the range of relaxation measurement. For example, the theoretical value of
g?>is 1.39 at T = 70 K and B = 0.3 T. Here, the theoretical g? equation
in Eq. (1.43) is derived for the region far from the TAFF state. Strictly
speaking, it is not self-consistent that the theoretical expression of g? is used
in the vicinity of TAFF state. However, this theoretical value of g? is used in
this study.

On the other hand, o2 is used as a fitting parameter at each temper-
ature with assuming the independence of B and FE, and the temperature
dependence is shown in Fig. 3.6. As shown in Figs. 3.1 ~ 3.5, the theoretical
results can explain the experimental results in wide range of the electric field.

Therefore, the assumed parameters in this analysis seem to be reasonable.

Table 3.1. Parameters used in the numerical calculation.

An m oy
9.0 x 10 2.0 0.51
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Fig. 3.6. Temperature dependence of o?.

The observed electric fields are smaller than the theoretical ones in a range
of high electric field and high magnetic field. This deviation comes from the
sharing flow of current to the silver sheath in experiment. In the analysis the
parallel circuit model of superconductor and silver matrix was used. However,
the results did not change largely even by consideration of sharing current
flow to the matrix. The reason for this deviation is not clear now.

Thus, it can be said that the flux creep-flow model can approximately
describe the E-J characteristics in wide ranges of temperature, magnetic
field and electric field. This shows that the thermal depinning is the basic
mechanism which determines the F-J characteristics.

Fig. 3.7 shows the magnetic field dependence of the pinning force density
F, at 70 K defined at (a) E = 1.0x107* V/m and (b) E = 1.0x 107 V/m in
the four probe and magnetization methods, respectively. It is seen that the
value of F}, and the peak magnetic field have larger values at higher electric

field. This suggests that the effect of the flux creep is very large in two-
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dimensional superconductors such as Bi-2223. This is caused by the weak
pinning force and the small transverse bundle size due to a poor supercon-
ductivity in the block layer.

Fig. 3.6 shows that the distribution width of J. increases with temper-
ature. When the temperature approches T, the distribution of 7. is larger
than that of the low temperature. This contributes the increased width of J.
with temperature. This tendency is consistent with the usual temperature
dependence of n-value by the flux creep, since n which characterizes the E-J
property as F/ o« J" becomes usually smaller if the distribution width of J.
increases with temperature.

Although the present theoretical model approximately explains the ob-
served FE-J characteristics, the details cannot be explained. That is, as the
current density J becomes smaller, the theoretical n takes on much smaller
value than the experimental value. The reason for this deviation is considered
to be attributed to the expression of g2 at low current densities. That is, the
electric field dependence of g was disregarded. In addition, Eq.(1.43) can
be applied to the region far from the TAFF(Thermally Activated Flux Flow)
state. However, the theoretical prediction shows a typical TAFF behavior as
can be seen in Fig. 3.5. Thus, a self-consistent theoretical expression of g2
should be obtained.

On the other hand, the finite ohmic resistance given by TAFF model is
not predicted by the collective flux-creep model by Feige’man et al.'® in the
range of the flux creep. Their theory assumes a nonlinear J dependence of
the activation energy, such as U ~ J7#. In this assumption the activation
energy diverges when J — 0. Therefore, the collective flux-creep model
shows the same behavior in the glass state of flux lines as in the vortex glass-
liquid transition model'>??. That is, the electric field is predicted not to be
generated in the range of sufficiently small current density. As a result, the
E—J characteristics convex upward should be maintained in a whole range of
the magnetic field smaller than the transition field. As is seen in Fig. 3.5, the
experimental E—J curves show a typical convex upward behavior in the glass
state at low magnetic fields in the range of high electric field. On the other

hand, the curves are obviously convex downward like those in the liquid state
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Fig. 3.7. Pinning force density at 70 K defined at (a) high and (b) low electric fields. Symbols

and lines show experiment and theory, respectively.
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in the range of very low electric field. Hence, this is contradictory to both
the collective flux-creep model and the vortex glass-liquid transition model.
Such a tendency was also shown in the experimental results of Nakamura et
al.” for an Y-123 thin film, as mentioned in section 1.4.3.

According to the theory on the flux bundle size in which the irreversible
thermodynamic principle is considered?”, the number of flux lines inside the
flux bundle is given by Eq. (1.43) at the electric field strength E. Hence, the
flux bundle size is predicted to become larger as E' becomes smaller. Thus,
the E—J characteristics convex upward is derived. However, the flux bundle
size is finite, and it does not diverge. That is, the flux bundle size is limited by
geas for the perfect flux line lattice. In usual flux line lattices imperfections
are included and the flux bundle size is much smaller than this value. It
should be noted that the practical flux bundle size is different from the elastic
correlation length of the flux lattice which diverges at the vortex glass-liquid
transition field. This is an essential point that this theory is different from
the theory of Feige’'man et al. The elastic correlation length gives only the
maximum of the flux bundle size. That is, the elastic correlation length itself
does not change with F as assumed by Feigel’'man et al. but is a constant,
while the flux bundle size changes as predicted by the law of the irreversible
thermodynamics.

In the present analysis, the electric field dependence of g? is not considered.
If this dependence is taken into account, g2 becomes larger as the electric field
becomes smaller, resulting in a smaller effect of the flux creep. Therefore, the
n-value is predicted to become large, and the agreement between theoretical
and experimental results will be better.

The other reason is considered about the deviation of the E—J charac-
teristics at low current densities. The generated electric field is strongly
influenced by the percolation process of flux lines. Therefore, the magnetic
field dependence of the percolation process is different by the range of the
electric field due to the flux creep or the flux flow. That is, it is considered

that the distribution given by Eq. (3.4) depends on the range of the electric
field.
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Fig. 3.8. Ratio of contribution of flux flow to the total electric field predicted by the flux
creep-flow model at 77.3 K. Magnetic field is varied from 0.01 T to 0.19 T with a
step of 0.01 T.

3.3 Ratio of contribution of flux flow to the total elec-

tric field

The induced electric field is composed of the two components of flux creep
and flux flow. Figure 3.8 shows the ratio of lux low component to the total
electric field at 77.3 K. For example, the ratio of the flux flow component is
about 1% at 0.01 T. The ratio becomes smaller with decreasing temperature.
Hence, the most of electric field is caused by the flux creep even in the electric
field range of resistive measurement. This result is consistent with the fact
that the mechanism of flux creep generally explains various phenomena such
as the critical current density, the irreversibility field and so on.

It is known that the E-J curves measured by the four probe method can

easily be calculated by the percolation flow model, in which the flux creep
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is approximated by an equivalent flux flow. This approximation is done by
making the pinning potential shallow as in Fig. 1.15. However, in the creep
region of a very low electric field such as 1071° V/m, the theoretical prediction
deviates from experiment due to a part of flux creep which was neglected.
Therefore, an extensive percolation flow model which takes account of the flux
creep was proposed'”. In addition, a new attempt frequency v is assumed
as a fitting parameter instead of vy in Eq. (1.22), and a value of the order of
107 Hz is used to explain experimental results at low electric fields'®,

The attempt frequency, vy, is theoretically derived as in Eq. (1.22). Its
value is of the order of 10!° Hz and is about 3 orders of magnitude higher
than 1) in the extensive percolation flow model. Since the potential barrier

is given by U; + AU as illustrated in Fig.1.1(b), the electric field due to the

flux creep is expressed as

U AU
FE = Ba,fl/oeXp <_kB—CIT) exp (_kB—T) . (36)
Hence, v is formally given by
U
V) = Vgexp (_kB—lT) : (3.7)

This shows that v is much smaller than vy. The difference of 3 orders of
magnitude can be explained by assuming U;/kg = 534 K at 77.3 K. This
value seems to be reasonable for Bi-2223 superconductor.

Here, the results of the two theoretical models are compared. In the first
place, the theoretical E-J curves of the flux creep-flow model are adjusted to
fit the experimental curves. Secondly, the theoretical results of percolation
flow model are also adjusted to fit the experimental results. Then, these two
theoretical results are directly compared in Fig. 3.9. A fairly good agreement
was obtained between the two models. Therefore, it can be concluded that
the percolation flow model is consistent with the flux creep-flow model. This
means that the flux creep-flow model can give a theoretical foundation of the
percolation flow model. Namely, J.,, which is merely a fitting parameter in
the percolation flow model, can be explained using J.o which can be estimated
on the basis of material parameters. Therefore, this gives the theoretical

proof for the percolation flow model. The last problem is to check the simple
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Fig. 3.9. Comparison of E-J theoretical curves between the flux creep-flow model (dotted

lines) and the percolation flow model (solid lines) at 77.3 K.
assumption on the proportionality between AU and J., in the range of low

electric field.

3.4 Pinning potential U

The pinning potential, Uy, is an important parameter to determine the irre-
versibility field and the relaxation rate of the superconducting current due

to the flux creep as mentioned in sections 1.2.2 and 1.2.3, as well as the E-J

characteristics.
Here, a new method of estimation of Uj is proposed with the aid of the

flux creep theory with J evaluated in section 3.2.
As shown in Figs. 3.10 and 3.11, the symbols show the F-J characteristics

obtained by the relaxation measurement with the SQUID magnetometer at
magnetic fields close to the irreversibility fields. It is found that the E-J
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characteristics in the range of sufficiently small J are close to those expressed
as I/ o« J in the TAFF state. The E-J characteristics are shown by red
symbols in Fig. 3.1~3.4. The E-J characteristics in the TAFF state are
described as Eq. (1.24). The solid lines in Fig. 3.1~3.4 show Eq. (1.24),
where Uy 1s used as a fitting parameter. In the above, it is assumed that J

is not distributed but is given by the most probable value:

1— (%)2 mls”—1 (1— 15 )6, (3.8)

c2
Then, Uy can be estimated. The evaluated values of U, are shown as black

JcO — Am

symbols in Figs. 3.12~3.16. As the magnetic field increases, U, decreases.
The dependence is not strong.

Uy was also estimated using the other methods. Here, some of other
methods are briefly introduced in the following, in order to compare with the

above new method.

(1) Analysis of the observed irreversibility field

When observed results of the irreversibility field and the irreversibility
temperature are substituted into Eq. (1.27), Uy can directly estimated.
The open symbols in Fig. 3.17 show observed irreversibility fields which
are determined with E, = 107 V/m and AJ. = 10" A/m? for the

criterion of J..

(2) Theoretical analysis of the E-J characteristics

Uy can also be theoretically estimated from Eq. (1.24). For simplicity,
the most probable value of Jo of Eq. (3.8) is used.

(3) The E-J characteristics in the range of TAFF state using the four probe
method

Using the four probe method, the ohmic E-J characteristics in the TAFF

state are measured. Equation (1.25) leads to

Uo
log p ~ ——— + log po. 3.9
gp =~ +log o (3.9)
Hence, Uy can be estimated from the slope of the relationship of logp vs
1/T, as mentioned in section 1.2.2.
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Figs. 3.12~3.16 show comparison among the results obtained by the above
methods. The open symbols and solid lines are obtained from the analysis
of the observed irreversibility field in (1) and the E-J characteristics in (2),
respectively.

Although a slight deviation is seen among three methods, they are approx-
imately consistent. Therefore, the value of Uy using the new method seems
to be reasonable. However, this deviation is considered to be attributed to
the neglected distribution of Jg.

Here, the irreversibility field is considered again. All symbols and lines in
Fig. 3.17 are determined wtih E, = 1071 V/m and AJ. = 10° A/m?. The
open symbols show observed results. The dotted line is theoretical result
estimated from the FE-J characteristics in which the distribution of J. is
taken into account. The theoretical result can explain the observed result.
On the other hand, the theoretical irreversibility field estimated from Eq.
(1.49) with the most probable value of J is shown by the solid line in the
figure. A large deviation is seen between the dotted line and the solid line.

The reason for this deviation is also considered to be the distribution of J.
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Fig. 3.10. Comparison of experimental(symbol) and theoretical(line) E-.J curve at 40.0 K and
1500 mT in the TAFF state.
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Fig. 3.11. Comparison of experimental(symbol) and theoretical(line) E-.J curve at 70.0 K and
240 mT. The solid line lines show the curve in TAFF state.
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Fig. 3.12. Experimental(solid symbol) and theoretical(line) pinning potential at 40.0 K. Open

symbol shows the pinning potential estimated from the irreversibility field.
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Fig. 3.13. Experimental(solid symbol) and theoretical(line) pinning potential at 50.0 K. Open

symbol shows the pinning potential estimated from the irreversibility field.
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Fig. 3.14. Experimental(solid symbol) and theoretical(line) pinning potential at 60.0 K. Open

symbol shows the pinning potential estimated from the irreversibility field.
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Fig. 3.15. Experimental(solid symbol) and theoretical(line) pinning potential at 70.0 K. Open

symbol shows the pinning potential estimated from the irreversibility field.
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Fig. 3.16. Experimental(solid symbol) and theoretical(line) pinning potential at 80.0 K. Open

symbol shows the pinning potential estimated from the irreversibility field.
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theoretical results for the most probable value and the distribution of J., respec-

tively.
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Chapter 4

Conclusions

4.1 Summary

In this study, the E-J characteristics are evaluated in a wide range of the
electric field and the pinning potential Uj is estimated for a superconducting

Bi-2223 silver-sheathed tape. The following results are obtained.

e The FE-J characteristics are approximately explained by the flux creep-
flow model in wide ranges of temperature, magnetic field and electric
field. Therefore, it is concluded that the thermal depinning is the basic
mechanism which determines the E-J characteristics. This gives the the-
oretical proof for the percolation flow model in which the characteristics
are expressed by an equivalent flux flow in the range of a significant flux

creep.

e The difference of the characteristics between the four probe and magne-

tization methods can be attributed to the effect of filament sausaging.

e As the electric field becomes small, the value of F}, in Bi-based super-
conductor decreases drastically. This suggests that the effect of the flux
creep is very large in two-dimensional superconductors. This is ascribed
to a poor pinning force and a small transverse bundle size, the both of

which are caused by the poor superconductivity in the block layer.

e The F—J characteristics show the flux-glass like state in the range of
high electric field, while those behave like the liquid state in the range

of very low electric field. This is not consistent with the prediction of
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the collective flux creep-model by Feige’man et al. and the glass-liquid
transition theory. On the other hand, the principle of the irreversible
thermodynamics for the flux bundle size is considered to be essential,
and theory predicts that, when the current density is decreased, a finite

ohmic electric resistivity is generated similarly to the TAFF model.

The large deviation is observed between experimental results and theo-
retical results at low current densities. One of the reasons is considered to
be a deviation of g2 for the theoretical expression at low current densities.
Another reason is that the magnetic field dependence of the percolation
property is different by the observed electric field, and the distribution
such as Eq. (3.4) is different by the observed electric field, too.

It is found that most of the electric field is caused by the flux creep even
in the range of the usual resistive measurement. This result is consistent
with the fact that the mechanism of flux creep generally explains various
phenomena such as the critical current density, the irreversibility field

and so on.

A difference of the attempt frequency of flux bundle between the flux
creep-flow model and the extensive percolation flow model can be ex-

plained by a difference of assumed pinning potential.

The flux creep-flow model can give a theoretical foundation of the percola-

tion flow model in the electric-field range of usual resistive measurements.

It is found that the F-J characteristics observed using a relaxation method
in the vicinity of the irreversibility field are close to those in the TAFF

state.

It is found that U, can be quantitatively estimated by comparing the
observed and the theoretical E-J characteristics in the TAFF state. Al-
though a slight deviation is seen due to the distribution of J.y, the value
of Uy is considered to be reasonable from comparison with those obtained

by other methods.
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e A large deviation is seen between the irreversibility field estimated using
the most probable value of J., and the irreversibility field in which the
distribution of Jg is taken into account. This shows that the distribution

of J. affects the irreversibility field strongly.
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Appendix A

Appendix

A.1 Estimation of the F-J characteristics using a mag-

netization method

We suppose a rectangular superconducting filament with a width w, a length
[ (> w) and a thickness d as shown in Fig. A.1. The z—, y— and z— axes
assumed in the directions of the width, the length and the thickness. It is
supposed that an external magnetic field of a sufficient magnitude B, was
first applied to the filament along the z-axis, and then, decreased to a desired
value for the measurement B., so that the filament could be in the critical
state. The Bean model, in which the current density J is a constant, is
assumed for the shielding current induced inside the filament. Therefore, the
flux distribution in the critical state is shown in Fig. A.2. The corresponding
flux distribution in the z-z plane and the current distribution (along the y
axis) are shown in Fig. A.3.

The path of the current in the filament which flows on point, Q(z, y, 2), is
supposed. As seen in this Fig. A.4, the path C is given by a rectangle which is
composed of four apexes of Py(z, x4+ (l—w)/2, 2), Po( -z, 2+ (I—w)/2, 2),
Ps(—2z, —z—(I—w)/2, z) and Py(z, —z — (I —w)/2, z). If S(z) is an area
of the section surrounded by the closed loop, C, a magnitude of a magnetic
moment due to the loop current of Jdzdz is given by S(x)Jdzdz, where
we have S(z) = 2z[z + (I — w)/2]. Therefore, the magnetic moment of a

filament is given by [ [ S(z)Jdzdz. If the number of filaments is n¢, the
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total magnetic moment of the tape specimen is given by

2(3l —w)dJ
m = ng / / S(a)Jdzds = " > w)dJ, (A1)
From this equaton, we have
12
J = UL (A.2)

niw?(3l — w)d
Thus, J can be estimated from the observed magnetic moment.

If the magnetic moment by a current flowing in the closed loop C is given

by mg(z), the magnetic flux through C is given by

NOms(fE)

From the relationship of m = ngmg(w/2), the above equation is written as

®(z) = B.S(z) + (A.3)

Homm
’n,fd .

Using a law of electromagnetic induction, the electric field inside the filament

®(w/2) = wlB. + (A.4)

is obtained as
1 d®(x)
A2z + (I —w)/2]  dt
Therefore, from Eqgs. (A.4) and (A.5), we have the electric field at the edge
of the filament:

E(z) = (A.5)

_ Ho _ dm
2df (1 +w) dt

E(w/2) = (A.6)

Thus, the E-J can be estimated from the observed magnetic moment m
and its relaxation dm/dtusing Egs. (A.2) and (A.6). The current density
corresponds to the mean value inside the filament, and the electric field cor-

responds to the maximum value at the edge of the filament.
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Fig. A.2. Flux distribution in the critical state in the filament after a magnetic field is de-

creased.
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