Corrections

page, line	before correction	after correction
p. 26, 2nd line	the magnetic flux density	the current density
p. 80, Fig. 2.26	position of 0.5 in the abscissa is wrong	(new figure)
p. 141, 6th line p. 148, 18th line p. 149, 14th line	(2.1) Sect. 7.9 Following sentence is added after "small J."	$\overline{(2.2)}$ Sect. 7.7 This is called Thermally Assisted Flux Flow (TAFF).
p. 205, Fig. 4. 36(a)	$\left(\mathrm{Vm}^{-1}\right)$ in unit of E	($10^{-4} \mathrm{Vm}^{-1}$) (new figure)
p. 227, 4th line	$\mu_{1}^{\prime \prime}$	$\mu_{1}^{\prime \prime} / \mu_{0}$
p. 233, 21st line		"due to the large rate of cancellation" is inserted after "is small"
p. 238, Eq. (6.5)	$\left[(k \xi)^{-2}+2\right]$	$\left[\left(\frac{r_{\mathrm{n}}}{\xi}\right)^{2}+2\right]$
p. 247, Eq. (6.21)	$\exp \left(\frac{s}{l_{\mathrm{b}}}\right)$	$\exp \left(-\frac{s}{l_{\mathrm{b}}}\right)$
p. 252 , Fig. 6.14	" 0 " in the left most in the abscissa should be changed to " -80 "	(new figure)
p. 258, 15-16th lines	with replacement of H_{e} by B / μ_{0}	with elimination of H_{e} using $H=$ B / μ_{0}
p. 261, 20th line	$2 \xi_{0}$	$0.55 \xi_{0}$
p. 261, 22nd line	4.0	4.4
p. 265, 1st line	340.	340, 413.
p. 276, 24th line	$\rho(X)$	$\rho(X) \mathrm{d} X$
p. 334, 36th line	Sects. 8.3 and 8.5	Sects. 8.4 and 8.5
p. 335, 19th line	Sect. 8.3	Sect. 8.5
p. 371, 10th line 373, Fig 8.27		" L_{c} " is inserted after "a flux line" d is changed to s (new figure)
p. 378, Eq. (8.23)		$-\omega_{n}^{2} \theta$
p. 378 , Eq. (8.23) p. 381 , footnote	$-\omega_{\mathrm{p}}-2 \theta$ Fig. 8.52	Fig. 8.55
p. 381 , footnote	Fig. 8.52	Fig. 8.55
p. 385,16 th line	Eq. (7.98)	Eq. (7.96)
p. 396, 24th line	Fig. 7.11	Fig. 7.17
p. 409, 22nd line		"and assume $\zeta=4$ " is inserted after "of g_{e}^{2} "
p. 412, Ref. 71	Hori	Horii

page, line	before correction	after correction
p. 421, 16th line	Specimen 4	Specimen 3
p. 422, Fig. 9.8(a)	Theoretical line is missing for 8 K	(new figure)
p. 431, 6th line	Eqs. (6.7)	Eqs. (6.6)
p. 433, Ref. 1	66180502.	66 (2002) 180502.
p. 433, Ref. 11	submitted to Physica C	Physica C 460-462 (2007) 581
p. 436, Eq. (A.8)	$\boldsymbol{J} \times \boldsymbol{B}-\boldsymbol{F}_{\mathrm{p}}$	$\boldsymbol{J} \times \boldsymbol{B}+\boldsymbol{F}_{\mathrm{p}}$
p. 436, Eq. (A.9)	$\boldsymbol{J} \times \boldsymbol{B}-\boldsymbol{F}_{\mathrm{p}}$	$\boldsymbol{J} \times \boldsymbol{B}+\boldsymbol{F}_{\mathrm{p}}$
p. 464, 2nd line	$-2 e^{2} \boldsymbol{A}\|\Psi\|^{2}$	$=-2 e^{2} \boldsymbol{A}\|\Psi\|^{2}$
p. 465, last line	$\exp \left[\frac{\sqrt{3} \pi}{4}(2 n-1)^{2}\right]$	$\exp \left[-\frac{\sqrt{3} \pi}{8}(2 n-1)^{2}\right]$
p. 466, 3rd line	$\exp \frac{\left.\frac{\sqrt{3}}{4}(2 n-1)^{2}\right]}{}$	$\exp \left[-\frac{\sqrt{3} \pi}{8}(2 n-1)^{2}\right]$
p. 466, 4th line	$\exp \left[\frac{\sqrt{3} \pi}{4}(2 n-1)^{2}\right]$	$\exp \left[-\frac{\sqrt{3} \pi}{8}(2 n-1)^{2}\right]$
p. 468, 3rd line	$\frac{\partial}{\partial t} \int_{\mathrm{S}} \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{S}$	$\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathrm{S}} \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{S}$
p. 478, last line	Eqs. (3.102)	Eqs. (3.101)
p. 481, 10th line	Eq. (4.2)	Eq. (4.3)
p. 481, 28th line	Eqs. (4.8) and (4.9)	Eqs. (4.9) and (4.10)
p. 483, 1st line	Eqs. (4.3) and (4.4)	Eqs. (4.4) and (4.5)

